Step |
Hyp |
Ref |
Expression |
1 |
|
lpadlen.1 |
|- ( ph -> L e. NN0 ) |
2 |
|
lpadlen.2 |
|- ( ph -> W e. Word S ) |
3 |
|
lpadlen.3 |
|- ( ph -> C e. S ) |
4 |
|
lpadlen2.1 |
|- ( ph -> ( # ` W ) <_ L ) |
5 |
|
fzofi |
|- ( 0 ..^ ( L - ( # ` W ) ) ) e. Fin |
6 |
|
snfi |
|- { C } e. Fin |
7 |
|
hashxp |
|- ( ( ( 0 ..^ ( L - ( # ` W ) ) ) e. Fin /\ { C } e. Fin ) -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) x. ( # ` { C } ) ) ) |
8 |
5 6 7
|
mp2an |
|- ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) x. ( # ` { C } ) ) |
9 |
8
|
a1i |
|- ( ph -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) x. ( # ` { C } ) ) ) |
10 |
|
lencl |
|- ( W e. Word S -> ( # ` W ) e. NN0 ) |
11 |
2 10
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
12 |
|
nn0sub2 |
|- ( ( ( # ` W ) e. NN0 /\ L e. NN0 /\ ( # ` W ) <_ L ) -> ( L - ( # ` W ) ) e. NN0 ) |
13 |
11 1 4 12
|
syl3anc |
|- ( ph -> ( L - ( # ` W ) ) e. NN0 ) |
14 |
|
hashfzo0 |
|- ( ( L - ( # ` W ) ) e. NN0 -> ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) = ( L - ( # ` W ) ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) = ( L - ( # ` W ) ) ) |
16 |
|
hashsng |
|- ( C e. S -> ( # ` { C } ) = 1 ) |
17 |
3 16
|
syl |
|- ( ph -> ( # ` { C } ) = 1 ) |
18 |
15 17
|
oveq12d |
|- ( ph -> ( ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) x. ( # ` { C } ) ) = ( ( L - ( # ` W ) ) x. 1 ) ) |
19 |
13
|
nn0cnd |
|- ( ph -> ( L - ( # ` W ) ) e. CC ) |
20 |
19
|
mulid1d |
|- ( ph -> ( ( L - ( # ` W ) ) x. 1 ) = ( L - ( # ` W ) ) ) |
21 |
9 18 20
|
3eqtrd |
|- ( ph -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( L - ( # ` W ) ) ) |