| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadlen.1 |  |-  ( ph -> L e. NN0 ) | 
						
							| 2 |  | lpadlen.2 |  |-  ( ph -> W e. Word S ) | 
						
							| 3 |  | lpadlen.3 |  |-  ( ph -> C e. S ) | 
						
							| 4 |  | lpadlen2.1 |  |-  ( ph -> ( # ` W ) <_ L ) | 
						
							| 5 |  | fzofi |  |-  ( 0 ..^ ( L - ( # ` W ) ) ) e. Fin | 
						
							| 6 |  | snfi |  |-  { C } e. Fin | 
						
							| 7 |  | hashxp |  |-  ( ( ( 0 ..^ ( L - ( # ` W ) ) ) e. Fin /\ { C } e. Fin ) -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) x. ( # ` { C } ) ) ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) x. ( # ` { C } ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) x. ( # ` { C } ) ) ) | 
						
							| 10 |  | lencl |  |-  ( W e. Word S -> ( # ` W ) e. NN0 ) | 
						
							| 11 | 2 10 | syl |  |-  ( ph -> ( # ` W ) e. NN0 ) | 
						
							| 12 |  | nn0sub2 |  |-  ( ( ( # ` W ) e. NN0 /\ L e. NN0 /\ ( # ` W ) <_ L ) -> ( L - ( # ` W ) ) e. NN0 ) | 
						
							| 13 | 11 1 4 12 | syl3anc |  |-  ( ph -> ( L - ( # ` W ) ) e. NN0 ) | 
						
							| 14 |  | hashfzo0 |  |-  ( ( L - ( # ` W ) ) e. NN0 -> ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) = ( L - ( # ` W ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) = ( L - ( # ` W ) ) ) | 
						
							| 16 |  | hashsng |  |-  ( C e. S -> ( # ` { C } ) = 1 ) | 
						
							| 17 | 3 16 | syl |  |-  ( ph -> ( # ` { C } ) = 1 ) | 
						
							| 18 | 15 17 | oveq12d |  |-  ( ph -> ( ( # ` ( 0 ..^ ( L - ( # ` W ) ) ) ) x. ( # ` { C } ) ) = ( ( L - ( # ` W ) ) x. 1 ) ) | 
						
							| 19 | 13 | nn0cnd |  |-  ( ph -> ( L - ( # ` W ) ) e. CC ) | 
						
							| 20 | 19 | mulridd |  |-  ( ph -> ( ( L - ( # ` W ) ) x. 1 ) = ( L - ( # ` W ) ) ) | 
						
							| 21 | 9 18 20 | 3eqtrd |  |-  ( ph -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( L - ( # ` W ) ) ) |