| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadlen.1 | ⊢ ( 𝜑  →  𝐿  ∈  ℕ0 ) | 
						
							| 2 |  | lpadlen.2 | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑆 ) | 
						
							| 3 |  | lpadlen.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 4 |  | lpadlen2.1 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ≤  𝐿 ) | 
						
							| 5 |  | fzofi | ⊢ ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ∈  Fin | 
						
							| 6 |  | snfi | ⊢ { 𝐶 }  ∈  Fin | 
						
							| 7 |  | hashxp | ⊢ ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ∈  Fin  ∧  { 𝐶 }  ∈  Fin )  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  ( ( ♯ ‘ ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) )  ·  ( ♯ ‘ { 𝐶 } ) ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  ( ( ♯ ‘ ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) )  ·  ( ♯ ‘ { 𝐶 } ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  ( ( ♯ ‘ ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) )  ·  ( ♯ ‘ { 𝐶 } ) ) ) | 
						
							| 10 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑆  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 12 |  | nn0sub2 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≤  𝐿 )  →  ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  ∈  ℕ0 ) | 
						
							| 13 | 11 1 4 12 | syl3anc | ⊢ ( 𝜑  →  ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  ∈  ℕ0 ) | 
						
							| 14 |  | hashfzo0 | ⊢ ( ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) )  =  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) )  =  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 16 |  | hashsng | ⊢ ( 𝐶  ∈  𝑆  →  ( ♯ ‘ { 𝐶 } )  =  1 ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝐶 } )  =  1 ) | 
						
							| 18 | 15 17 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) )  ·  ( ♯ ‘ { 𝐶 } ) )  =  ( ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  ·  1 ) ) | 
						
							| 19 | 13 | nn0cnd | ⊢ ( 𝜑  →  ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 20 | 19 | mulridd | ⊢ ( 𝜑  →  ( ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  ·  1 )  =  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 21 | 9 18 20 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) |