| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadlen.1 | ⊢ ( 𝜑  →  𝐿  ∈  ℕ0 ) | 
						
							| 2 |  | lpadlen.2 | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑆 ) | 
						
							| 3 |  | lpadlen.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 4 |  | lpadlen2.1 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ≤  𝐿 ) | 
						
							| 5 | 1 2 3 | lpadval | ⊢ ( 𝜑  →  ( ( 𝐶  leftpad  𝑊 ) ‘ 𝐿 )  =  ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝐶  leftpad  𝑊 ) ‘ 𝐿 ) )  =  ( ♯ ‘ ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ) ) | 
						
							| 7 | 3 | lpadlem1 | ⊢ ( 𝜑  →  ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ∈  Word  𝑆 ) | 
						
							| 8 |  | ccatlen | ⊢ ( ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ∈  Word  𝑆  ∧  𝑊  ∈  Word  𝑆 )  →  ( ♯ ‘ ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) )  =  ( ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  +  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 9 | 7 2 8 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) )  =  ( ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  +  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 10 | 1 2 3 4 | lpadlem2 | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  +  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  +  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 12 | 1 | nn0cnd | ⊢ ( 𝜑  →  𝐿  ∈  ℂ ) | 
						
							| 13 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑆  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 14 | 2 13 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 16 | 12 15 | npcand | ⊢ ( 𝜑  →  ( ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  +  ( ♯ ‘ 𝑊 ) )  =  𝐿 ) | 
						
							| 17 | 9 11 16 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) )  =  𝐿 ) | 
						
							| 18 | 6 17 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝐶  leftpad  𝑊 ) ‘ 𝐿 ) )  =  𝐿 ) |