| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpadlen.1 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 2 |
|
lpadlen.2 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) |
| 3 |
|
lpadlen.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
| 4 |
|
eqeq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = if ( 𝐿 ≤ ( ♯ ‘ 𝑊 ) , ( ♯ ‘ 𝑊 ) , 𝐿 ) → ( ( ♯ ‘ ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) ) = ( ♯ ‘ 𝑊 ) ↔ ( ♯ ‘ ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) ) = if ( 𝐿 ≤ ( ♯ ‘ 𝑊 ) , ( ♯ ‘ 𝑊 ) , 𝐿 ) ) ) |
| 5 |
|
eqeq2 |
⊢ ( 𝐿 = if ( 𝐿 ≤ ( ♯ ‘ 𝑊 ) , ( ♯ ‘ 𝑊 ) , 𝐿 ) → ( ( ♯ ‘ ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) ) = 𝐿 ↔ ( ♯ ‘ ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) ) = if ( 𝐿 ≤ ( ♯ ‘ 𝑊 ) , ( ♯ ‘ 𝑊 ) , 𝐿 ) ) ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ0 ) |
| 7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑆 ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐶 ∈ 𝑆 ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) |
| 10 |
6 7 8 9
|
lpadlen1 |
⊢ ( ( 𝜑 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ0 ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑆 ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐶 ∈ 𝑆 ) |
| 14 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑆 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 15 |
2 14
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 16 |
15
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 18 |
11
|
nn0red |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℝ ) |
| 19 |
1
|
nn0red |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 20 |
16 19
|
ltnled |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 21 |
20
|
biimpar |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) < 𝐿 ) |
| 22 |
17 18 21
|
ltled |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ≤ 𝐿 ) |
| 23 |
11 12 13 22
|
lpadlen2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) ) = 𝐿 ) |
| 24 |
4 5 10 23
|
ifbothda |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) ) = if ( 𝐿 ≤ ( ♯ ‘ 𝑊 ) , ( ♯ ‘ 𝑊 ) , 𝐿 ) ) |