| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpadlen.1 |
|- ( ph -> L e. NN0 ) |
| 2 |
|
lpadlen.2 |
|- ( ph -> W e. Word S ) |
| 3 |
|
lpadlen.3 |
|- ( ph -> C e. S ) |
| 4 |
|
eqeq2 |
|- ( ( # ` W ) = if ( L <_ ( # ` W ) , ( # ` W ) , L ) -> ( ( # ` ( ( C leftpad W ) ` L ) ) = ( # ` W ) <-> ( # ` ( ( C leftpad W ) ` L ) ) = if ( L <_ ( # ` W ) , ( # ` W ) , L ) ) ) |
| 5 |
|
eqeq2 |
|- ( L = if ( L <_ ( # ` W ) , ( # ` W ) , L ) -> ( ( # ` ( ( C leftpad W ) ` L ) ) = L <-> ( # ` ( ( C leftpad W ) ` L ) ) = if ( L <_ ( # ` W ) , ( # ` W ) , L ) ) ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ L <_ ( # ` W ) ) -> L e. NN0 ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ L <_ ( # ` W ) ) -> W e. Word S ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ L <_ ( # ` W ) ) -> C e. S ) |
| 9 |
|
simpr |
|- ( ( ph /\ L <_ ( # ` W ) ) -> L <_ ( # ` W ) ) |
| 10 |
6 7 8 9
|
lpadlen1 |
|- ( ( ph /\ L <_ ( # ` W ) ) -> ( # ` ( ( C leftpad W ) ` L ) ) = ( # ` W ) ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ -. L <_ ( # ` W ) ) -> L e. NN0 ) |
| 12 |
2
|
adantr |
|- ( ( ph /\ -. L <_ ( # ` W ) ) -> W e. Word S ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ -. L <_ ( # ` W ) ) -> C e. S ) |
| 14 |
|
lencl |
|- ( W e. Word S -> ( # ` W ) e. NN0 ) |
| 15 |
2 14
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
| 16 |
15
|
nn0red |
|- ( ph -> ( # ` W ) e. RR ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ -. L <_ ( # ` W ) ) -> ( # ` W ) e. RR ) |
| 18 |
11
|
nn0red |
|- ( ( ph /\ -. L <_ ( # ` W ) ) -> L e. RR ) |
| 19 |
1
|
nn0red |
|- ( ph -> L e. RR ) |
| 20 |
16 19
|
ltnled |
|- ( ph -> ( ( # ` W ) < L <-> -. L <_ ( # ` W ) ) ) |
| 21 |
20
|
biimpar |
|- ( ( ph /\ -. L <_ ( # ` W ) ) -> ( # ` W ) < L ) |
| 22 |
17 18 21
|
ltled |
|- ( ( ph /\ -. L <_ ( # ` W ) ) -> ( # ` W ) <_ L ) |
| 23 |
11 12 13 22
|
lpadlen2 |
|- ( ( ph /\ -. L <_ ( # ` W ) ) -> ( # ` ( ( C leftpad W ) ` L ) ) = L ) |
| 24 |
4 5 10 23
|
ifbothda |
|- ( ph -> ( # ` ( ( C leftpad W ) ` L ) ) = if ( L <_ ( # ` W ) , ( # ` W ) , L ) ) |