| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadlen.1 |  |-  ( ph -> L e. NN0 ) | 
						
							| 2 |  | lpadlen.2 |  |-  ( ph -> W e. Word S ) | 
						
							| 3 |  | lpadlen.3 |  |-  ( ph -> C e. S ) | 
						
							| 4 |  | lpadleft.1 |  |-  ( ph -> N e. ( 0 ..^ ( L - ( # ` W ) ) ) ) | 
						
							| 5 | 1 2 3 | lpadval |  |-  ( ph -> ( ( C leftpad W ) ` L ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( ph -> ( ( ( C leftpad W ) ` L ) ` N ) = ( ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ` N ) ) | 
						
							| 7 | 3 | lpadlem1 |  |-  ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S ) | 
						
							| 8 |  | lencl |  |-  ( W e. Word S -> ( # ` W ) e. NN0 ) | 
						
							| 9 | 2 8 | syl |  |-  ( ph -> ( # ` W ) e. NN0 ) | 
						
							| 10 |  | elfzo0 |  |-  ( N e. ( 0 ..^ ( L - ( # ` W ) ) ) <-> ( N e. NN0 /\ ( L - ( # ` W ) ) e. NN /\ N < ( L - ( # ` W ) ) ) ) | 
						
							| 11 | 4 10 | sylib |  |-  ( ph -> ( N e. NN0 /\ ( L - ( # ` W ) ) e. NN /\ N < ( L - ( # ` W ) ) ) ) | 
						
							| 12 | 11 | simp2d |  |-  ( ph -> ( L - ( # ` W ) ) e. NN ) | 
						
							| 13 | 12 | nnnn0d |  |-  ( ph -> ( L - ( # ` W ) ) e. NN0 ) | 
						
							| 14 |  | nn0sub |  |-  ( ( ( # ` W ) e. NN0 /\ L e. NN0 ) -> ( ( # ` W ) <_ L <-> ( L - ( # ` W ) ) e. NN0 ) ) | 
						
							| 15 | 14 | biimpar |  |-  ( ( ( ( # ` W ) e. NN0 /\ L e. NN0 ) /\ ( L - ( # ` W ) ) e. NN0 ) -> ( # ` W ) <_ L ) | 
						
							| 16 | 9 1 13 15 | syl21anc |  |-  ( ph -> ( # ` W ) <_ L ) | 
						
							| 17 | 1 2 3 16 | lpadlem2 |  |-  ( ph -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( L - ( # ` W ) ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) ) = ( 0 ..^ ( L - ( # ` W ) ) ) ) | 
						
							| 19 | 4 18 | eleqtrrd |  |-  ( ph -> N e. ( 0 ..^ ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) ) ) | 
						
							| 20 |  | ccatval1 |  |-  ( ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S /\ W e. Word S /\ N e. ( 0 ..^ ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) ) ) -> ( ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ` N ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ` N ) ) | 
						
							| 21 | 7 2 19 20 | syl3anc |  |-  ( ph -> ( ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ` N ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ` N ) ) | 
						
							| 22 |  | fvconst2g |  |-  ( ( C e. S /\ N e. ( 0 ..^ ( L - ( # ` W ) ) ) ) -> ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ` N ) = C ) | 
						
							| 23 | 3 4 22 | syl2anc |  |-  ( ph -> ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ` N ) = C ) | 
						
							| 24 | 6 21 23 | 3eqtrd |  |-  ( ph -> ( ( ( C leftpad W ) ` L ) ` N ) = C ) |