Description: Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lpadlem1.1 | |- ( ph -> C e. S ) |
|
Assertion | lpadlem1 | |- ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpadlem1.1 | |- ( ph -> C e. S ) |
|
2 | fconst6g | |- ( C e. S -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) : ( 0 ..^ ( L - ( # ` W ) ) ) --> S ) |
|
3 | iswrdi | |- ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) : ( 0 ..^ ( L - ( # ` W ) ) ) --> S -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S ) |
|
4 | 1 2 3 | 3syl | |- ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S ) |