Step |
Hyp |
Ref |
Expression |
1 |
|
lpadlen.1 |
|- ( ph -> L e. NN0 ) |
2 |
|
lpadlen.2 |
|- ( ph -> W e. Word S ) |
3 |
|
lpadlen.3 |
|- ( ph -> C e. S ) |
4 |
|
lpadlen2.1 |
|- ( ph -> ( # ` W ) <_ L ) |
5 |
1 2 3
|
lpadval |
|- ( ph -> ( ( C leftpad W ) ` L ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) |
6 |
5
|
fveq2d |
|- ( ph -> ( # ` ( ( C leftpad W ) ` L ) ) = ( # ` ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) ) |
7 |
3
|
lpadlem1 |
|- ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S ) |
8 |
|
ccatlen |
|- ( ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S /\ W e. Word S ) -> ( # ` ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) = ( ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) + ( # ` W ) ) ) |
9 |
7 2 8
|
syl2anc |
|- ( ph -> ( # ` ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) = ( ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) + ( # ` W ) ) ) |
10 |
1 2 3 4
|
lpadlem2 |
|- ( ph -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( L - ( # ` W ) ) ) |
11 |
10
|
oveq1d |
|- ( ph -> ( ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) + ( # ` W ) ) = ( ( L - ( # ` W ) ) + ( # ` W ) ) ) |
12 |
1
|
nn0cnd |
|- ( ph -> L e. CC ) |
13 |
|
lencl |
|- ( W e. Word S -> ( # ` W ) e. NN0 ) |
14 |
2 13
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
15 |
14
|
nn0cnd |
|- ( ph -> ( # ` W ) e. CC ) |
16 |
12 15
|
npcand |
|- ( ph -> ( ( L - ( # ` W ) ) + ( # ` W ) ) = L ) |
17 |
9 11 16
|
3eqtrd |
|- ( ph -> ( # ` ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) = L ) |
18 |
6 17
|
eqtrd |
|- ( ph -> ( # ` ( ( C leftpad W ) ` L ) ) = L ) |