| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadlen.1 |  |-  ( ph -> L e. NN0 ) | 
						
							| 2 |  | lpadlen.2 |  |-  ( ph -> W e. Word S ) | 
						
							| 3 |  | lpadlen.3 |  |-  ( ph -> C e. S ) | 
						
							| 4 |  | lpadlen2.1 |  |-  ( ph -> ( # ` W ) <_ L ) | 
						
							| 5 | 1 2 3 | lpadval |  |-  ( ph -> ( ( C leftpad W ) ` L ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ph -> ( # ` ( ( C leftpad W ) ` L ) ) = ( # ` ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) ) | 
						
							| 7 | 3 | lpadlem1 |  |-  ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S ) | 
						
							| 8 |  | ccatlen |  |-  ( ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) e. Word S /\ W e. Word S ) -> ( # ` ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) = ( ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) + ( # ` W ) ) ) | 
						
							| 9 | 7 2 8 | syl2anc |  |-  ( ph -> ( # ` ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) = ( ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) + ( # ` W ) ) ) | 
						
							| 10 | 1 2 3 4 | lpadlem2 |  |-  ( ph -> ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) = ( L - ( # ` W ) ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ph -> ( ( # ` ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) + ( # ` W ) ) = ( ( L - ( # ` W ) ) + ( # ` W ) ) ) | 
						
							| 12 | 1 | nn0cnd |  |-  ( ph -> L e. CC ) | 
						
							| 13 |  | lencl |  |-  ( W e. Word S -> ( # ` W ) e. NN0 ) | 
						
							| 14 | 2 13 | syl |  |-  ( ph -> ( # ` W ) e. NN0 ) | 
						
							| 15 | 14 | nn0cnd |  |-  ( ph -> ( # ` W ) e. CC ) | 
						
							| 16 | 12 15 | npcand |  |-  ( ph -> ( ( L - ( # ` W ) ) + ( # ` W ) ) = L ) | 
						
							| 17 | 9 11 16 | 3eqtrd |  |-  ( ph -> ( # ` ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) = L ) | 
						
							| 18 | 6 17 | eqtrd |  |-  ( ph -> ( # ` ( ( C leftpad W ) ` L ) ) = L ) |