| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpadlen.1 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 2 |
|
lpadlen.2 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) |
| 3 |
|
lpadlen.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
| 4 |
|
lpadlen1.1 |
⊢ ( 𝜑 → 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) |
| 5 |
1 2 3
|
lpadval |
⊢ ( 𝜑 → ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) = ( ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) ) |
| 6 |
1 2 3 4
|
lpadlem3 |
⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) = ∅ ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) = ( ∅ ++ 𝑊 ) ) |
| 8 |
|
ccatlid |
⊢ ( 𝑊 ∈ Word 𝑆 → ( ∅ ++ 𝑊 ) = 𝑊 ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → ( ∅ ++ 𝑊 ) = 𝑊 ) |
| 10 |
5 7 9
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) = 𝑊 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) ) = ( ♯ ‘ 𝑊 ) ) |