| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clpad |
⊢ leftpad |
| 1 |
|
vc |
⊢ 𝑐 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vw |
⊢ 𝑤 |
| 4 |
|
vl |
⊢ 𝑙 |
| 5 |
|
cn0 |
⊢ ℕ0 |
| 6 |
|
cc0 |
⊢ 0 |
| 7 |
|
cfzo |
⊢ ..^ |
| 8 |
4
|
cv |
⊢ 𝑙 |
| 9 |
|
cmin |
⊢ − |
| 10 |
|
chash |
⊢ ♯ |
| 11 |
3
|
cv |
⊢ 𝑤 |
| 12 |
11 10
|
cfv |
⊢ ( ♯ ‘ 𝑤 ) |
| 13 |
8 12 9
|
co |
⊢ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) |
| 14 |
6 13 7
|
co |
⊢ ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) |
| 15 |
1
|
cv |
⊢ 𝑐 |
| 16 |
15
|
csn |
⊢ { 𝑐 } |
| 17 |
14 16
|
cxp |
⊢ ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) |
| 18 |
|
cconcat |
⊢ ++ |
| 19 |
17 11 18
|
co |
⊢ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) ++ 𝑤 ) |
| 20 |
4 5 19
|
cmpt |
⊢ ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) ++ 𝑤 ) ) |
| 21 |
1 3 2 2 20
|
cmpo |
⊢ ( 𝑐 ∈ V , 𝑤 ∈ V ↦ ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) ++ 𝑤 ) ) ) |
| 22 |
0 21
|
wceq |
⊢ leftpad = ( 𝑐 ∈ V , 𝑤 ∈ V ↦ ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) ++ 𝑤 ) ) ) |