| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clpad | ⊢  leftpad | 
						
							| 1 |  | vc | ⊢ 𝑐 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vw | ⊢ 𝑤 | 
						
							| 4 |  | vl | ⊢ 𝑙 | 
						
							| 5 |  | cn0 | ⊢ ℕ0 | 
						
							| 6 |  | cc0 | ⊢ 0 | 
						
							| 7 |  | cfzo | ⊢ ..^ | 
						
							| 8 | 4 | cv | ⊢ 𝑙 | 
						
							| 9 |  | cmin | ⊢  − | 
						
							| 10 |  | chash | ⊢ ♯ | 
						
							| 11 | 3 | cv | ⊢ 𝑤 | 
						
							| 12 | 11 10 | cfv | ⊢ ( ♯ ‘ 𝑤 ) | 
						
							| 13 | 8 12 9 | co | ⊢ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) | 
						
							| 14 | 6 13 7 | co | ⊢ ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) ) | 
						
							| 15 | 1 | cv | ⊢ 𝑐 | 
						
							| 16 | 15 | csn | ⊢ { 𝑐 } | 
						
							| 17 | 14 16 | cxp | ⊢ ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } ) | 
						
							| 18 |  | cconcat | ⊢  ++ | 
						
							| 19 | 17 11 18 | co | ⊢ ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  ++  𝑤 ) | 
						
							| 20 | 4 5 19 | cmpt | ⊢ ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  ++  𝑤 ) ) | 
						
							| 21 | 1 3 2 2 20 | cmpo | ⊢ ( 𝑐  ∈  V ,  𝑤  ∈  V  ↦  ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  ++  𝑤 ) ) ) | 
						
							| 22 | 0 21 | wceq | ⊢  leftpad   =  ( 𝑐  ∈  V ,  𝑤  ∈  V  ↦  ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  ++  𝑤 ) ) ) |