Description: Define the class of left principal ideal rings, rings where every left ideal has a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lpir | |- LPIR = { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clpir | |- LPIR |
|
| 1 | vw | |- w |
|
| 2 | crg | |- Ring |
|
| 3 | clidl | |- LIdeal |
|
| 4 | 1 | cv | |- w |
| 5 | 4 3 | cfv | |- ( LIdeal ` w ) |
| 6 | clpidl | |- LPIdeal |
|
| 7 | 4 6 | cfv | |- ( LPIdeal ` w ) |
| 8 | 5 7 | wceq | |- ( LIdeal ` w ) = ( LPIdeal ` w ) |
| 9 | 8 1 2 | crab | |- { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) } |
| 10 | 0 9 | wceq | |- LPIR = { w e. Ring | ( LIdeal ` w ) = ( LPIdeal ` w ) } |