| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpival.p |
|- P = ( LPIdeal ` R ) |
| 2 |
|
lpival.k |
|- K = ( RSpan ` R ) |
| 3 |
|
lpival.b |
|- B = ( Base ` R ) |
| 4 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
| 5 |
|
fveq2 |
|- ( r = R -> ( RSpan ` r ) = ( RSpan ` R ) ) |
| 6 |
5
|
fveq1d |
|- ( r = R -> ( ( RSpan ` r ) ` { g } ) = ( ( RSpan ` R ) ` { g } ) ) |
| 7 |
6
|
sneqd |
|- ( r = R -> { ( ( RSpan ` r ) ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } ) |
| 8 |
4 7
|
iuneq12d |
|- ( r = R -> U_ g e. ( Base ` r ) { ( ( RSpan ` r ) ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } ) |
| 9 |
|
df-lpidl |
|- LPIdeal = ( r e. Ring |-> U_ g e. ( Base ` r ) { ( ( RSpan ` r ) ` { g } ) } ) |
| 10 |
|
fvex |
|- ( RSpan ` R ) e. _V |
| 11 |
10
|
rnex |
|- ran ( RSpan ` R ) e. _V |
| 12 |
|
p0ex |
|- { (/) } e. _V |
| 13 |
11 12
|
unex |
|- ( ran ( RSpan ` R ) u. { (/) } ) e. _V |
| 14 |
|
iunss |
|- ( U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) <-> A. g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) |
| 15 |
|
fvrn0 |
|- ( ( RSpan ` R ) ` { g } ) e. ( ran ( RSpan ` R ) u. { (/) } ) |
| 16 |
|
snssi |
|- ( ( ( RSpan ` R ) ` { g } ) e. ( ran ( RSpan ` R ) u. { (/) } ) -> { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) |
| 17 |
15 16
|
ax-mp |
|- { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) |
| 18 |
17
|
a1i |
|- ( g e. ( Base ` R ) -> { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) |
| 19 |
14 18
|
mprgbir |
|- U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) |
| 20 |
13 19
|
ssexi |
|- U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } e. _V |
| 21 |
8 9 20
|
fvmpt |
|- ( R e. Ring -> ( LPIdeal ` R ) = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } ) |
| 22 |
|
iuneq1 |
|- ( B = ( Base ` R ) -> U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( K ` { g } ) } ) |
| 23 |
3 22
|
ax-mp |
|- U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( K ` { g } ) } |
| 24 |
2
|
fveq1i |
|- ( K ` { g } ) = ( ( RSpan ` R ) ` { g } ) |
| 25 |
24
|
sneqi |
|- { ( K ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } |
| 26 |
25
|
a1i |
|- ( g e. ( Base ` R ) -> { ( K ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } ) |
| 27 |
26
|
iuneq2i |
|- U_ g e. ( Base ` R ) { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } |
| 28 |
23 27
|
eqtri |
|- U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } |
| 29 |
21 1 28
|
3eqtr4g |
|- ( R e. Ring -> P = U_ g e. B { ( K ` { g } ) } ) |