Metamath Proof Explorer


Theorem lpival

Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p 𝑃 = ( LPIdeal ‘ 𝑅 )
lpival.k 𝐾 = ( RSpan ‘ 𝑅 )
lpival.b 𝐵 = ( Base ‘ 𝑅 )
Assertion lpival ( 𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 { ( 𝐾 ‘ { 𝑔 } ) } )

Proof

Step Hyp Ref Expression
1 lpival.p 𝑃 = ( LPIdeal ‘ 𝑅 )
2 lpival.k 𝐾 = ( RSpan ‘ 𝑅 )
3 lpival.b 𝐵 = ( Base ‘ 𝑅 )
4 fveq2 ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
5 fveq2 ( 𝑟 = 𝑅 → ( RSpan ‘ 𝑟 ) = ( RSpan ‘ 𝑅 ) )
6 5 fveq1d ( 𝑟 = 𝑅 → ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) )
7 6 sneqd ( 𝑟 = 𝑅 → { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } )
8 4 7 iuneq12d ( 𝑟 = 𝑅 𝑔 ∈ ( Base ‘ 𝑟 ) { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } = 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } )
9 df-lpidl LPIdeal = ( 𝑟 ∈ Ring ↦ 𝑔 ∈ ( Base ‘ 𝑟 ) { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } )
10 fvex ( RSpan ‘ 𝑅 ) ∈ V
11 10 rnex ran ( RSpan ‘ 𝑅 ) ∈ V
12 p0ex { ∅ } ∈ V
13 11 12 unex ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ∈ V
14 iunss ( 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ↔ ∀ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) )
15 fvrn0 ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } )
16 snssi ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) → { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) )
17 15 16 ax-mp { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } )
18 17 a1i ( 𝑔 ∈ ( Base ‘ 𝑅 ) → { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) )
19 14 18 mprgbir 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } )
20 13 19 ssexi 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ∈ V
21 8 9 20 fvmpt ( 𝑅 ∈ Ring → ( LPIdeal ‘ 𝑅 ) = 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } )
22 iuneq1 ( 𝐵 = ( Base ‘ 𝑅 ) → 𝑔𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } )
23 3 22 ax-mp 𝑔𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) }
24 2 fveq1i ( 𝐾 ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )
25 24 sneqi { ( 𝐾 ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }
26 25 a1i ( 𝑔 ∈ ( Base ‘ 𝑅 ) → { ( 𝐾 ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } )
27 26 iuneq2i 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } = 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }
28 23 27 eqtri 𝑔𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }
29 21 1 28 3eqtr4g ( 𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 { ( 𝐾 ‘ { 𝑔 } ) } )