Metamath Proof Explorer


Definition df-m0s

Description: Define a function mapping expressions to statements. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-m0s
|- m0St = ( a e. _V |-> <. (/) , (/) , a >. )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cm0s
 |-  m0St
1 va
 |-  a
2 cvv
 |-  _V
3 c0
 |-  (/)
4 1 cv
 |-  a
5 3 3 4 cotp
 |-  <. (/) , (/) , a >.
6 1 2 5 cmpt
 |-  ( a e. _V |-> <. (/) , (/) , a >. )
7 0 6 wceq
 |-  m0St = ( a e. _V |-> <. (/) , (/) , a >. )