Step |
Hyp |
Ref |
Expression |
0 |
|
cmsa |
|- mSA |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
cmex |
|- mEx |
5 |
1
|
cv |
|- t |
6 |
5 4
|
cfv |
|- ( mEx ` t ) |
7 |
|
cm0s |
|- m0St |
8 |
3
|
cv |
|- a |
9 |
8 7
|
cfv |
|- ( m0St ` a ) |
10 |
|
cmax |
|- mAx |
11 |
5 10
|
cfv |
|- ( mAx ` t ) |
12 |
9 11
|
wcel |
|- ( m0St ` a ) e. ( mAx ` t ) |
13 |
|
c1st |
|- 1st |
14 |
8 13
|
cfv |
|- ( 1st ` a ) |
15 |
|
cmvt |
|- mVT |
16 |
5 15
|
cfv |
|- ( mVT ` t ) |
17 |
14 16
|
wcel |
|- ( 1st ` a ) e. ( mVT ` t ) |
18 |
|
c2nd |
|- 2nd |
19 |
8 18
|
cfv |
|- ( 2nd ` a ) |
20 |
19
|
ccnv |
|- `' ( 2nd ` a ) |
21 |
|
cmvar |
|- mVR |
22 |
5 21
|
cfv |
|- ( mVR ` t ) |
23 |
20 22
|
cres |
|- ( `' ( 2nd ` a ) |` ( mVR ` t ) ) |
24 |
23
|
wfun |
|- Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) |
25 |
12 17 24
|
w3a |
|- ( ( m0St ` a ) e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) /\ Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) ) |
26 |
25 3 6
|
crab |
|- { a e. ( mEx ` t ) | ( ( m0St ` a ) e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) /\ Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) ) } |
27 |
1 2 26
|
cmpt |
|- ( t e. _V |-> { a e. ( mEx ` t ) | ( ( m0St ` a ) e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) /\ Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) ) } ) |
28 |
0 27
|
wceq |
|- mSA = ( t e. _V |-> { a e. ( mEx ` t ) | ( ( m0St ` a ) e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) /\ Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) ) } ) |