| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmsa |
|- mSA |
| 1 |
|
vt |
|- t |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
|
cmex |
|- mEx |
| 5 |
1
|
cv |
|- t |
| 6 |
5 4
|
cfv |
|- ( mEx ` t ) |
| 7 |
|
cm0s |
|- m0St |
| 8 |
3
|
cv |
|- a |
| 9 |
8 7
|
cfv |
|- ( m0St ` a ) |
| 10 |
|
cmax |
|- mAx |
| 11 |
5 10
|
cfv |
|- ( mAx ` t ) |
| 12 |
9 11
|
wcel |
|- ( m0St ` a ) e. ( mAx ` t ) |
| 13 |
|
c1st |
|- 1st |
| 14 |
8 13
|
cfv |
|- ( 1st ` a ) |
| 15 |
|
cmvt |
|- mVT |
| 16 |
5 15
|
cfv |
|- ( mVT ` t ) |
| 17 |
14 16
|
wcel |
|- ( 1st ` a ) e. ( mVT ` t ) |
| 18 |
|
c2nd |
|- 2nd |
| 19 |
8 18
|
cfv |
|- ( 2nd ` a ) |
| 20 |
19
|
ccnv |
|- `' ( 2nd ` a ) |
| 21 |
|
cmvar |
|- mVR |
| 22 |
5 21
|
cfv |
|- ( mVR ` t ) |
| 23 |
20 22
|
cres |
|- ( `' ( 2nd ` a ) |` ( mVR ` t ) ) |
| 24 |
23
|
wfun |
|- Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) |
| 25 |
12 17 24
|
w3a |
|- ( ( m0St ` a ) e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) /\ Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) ) |
| 26 |
25 3 6
|
crab |
|- { a e. ( mEx ` t ) | ( ( m0St ` a ) e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) /\ Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) ) } |
| 27 |
1 2 26
|
cmpt |
|- ( t e. _V |-> { a e. ( mEx ` t ) | ( ( m0St ` a ) e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) /\ Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) ) } ) |
| 28 |
0 27
|
wceq |
|- mSA = ( t e. _V |-> { a e. ( mEx ` t ) | ( ( m0St ` a ) e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) /\ Fun ( `' ( 2nd ` a ) |` ( mVR ` t ) ) ) } ) |