Metamath Proof Explorer


Definition df-msa

Description: Define the set of syntax axioms. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-msa mSA = ( 𝑡 ∈ V ↦ { 𝑎 ∈ ( mEx ‘ 𝑡 ) ∣ ( ( m0St ‘ 𝑎 ) ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ∧ Fun ( ( 2nd𝑎 ) ↾ ( mVR ‘ 𝑡 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmsa mSA
1 vt 𝑡
2 cvv V
3 va 𝑎
4 cmex mEx
5 1 cv 𝑡
6 5 4 cfv ( mEx ‘ 𝑡 )
7 cm0s m0St
8 3 cv 𝑎
9 8 7 cfv ( m0St ‘ 𝑎 )
10 cmax mAx
11 5 10 cfv ( mAx ‘ 𝑡 )
12 9 11 wcel ( m0St ‘ 𝑎 ) ∈ ( mAx ‘ 𝑡 )
13 c1st 1st
14 8 13 cfv ( 1st𝑎 )
15 cmvt mVT
16 5 15 cfv ( mVT ‘ 𝑡 )
17 14 16 wcel ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 )
18 c2nd 2nd
19 8 18 cfv ( 2nd𝑎 )
20 19 ccnv ( 2nd𝑎 )
21 cmvar mVR
22 5 21 cfv ( mVR ‘ 𝑡 )
23 20 22 cres ( ( 2nd𝑎 ) ↾ ( mVR ‘ 𝑡 ) )
24 23 wfun Fun ( ( 2nd𝑎 ) ↾ ( mVR ‘ 𝑡 ) )
25 12 17 24 w3a ( ( m0St ‘ 𝑎 ) ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ∧ Fun ( ( 2nd𝑎 ) ↾ ( mVR ‘ 𝑡 ) ) )
26 25 3 6 crab { 𝑎 ∈ ( mEx ‘ 𝑡 ) ∣ ( ( m0St ‘ 𝑎 ) ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ∧ Fun ( ( 2nd𝑎 ) ↾ ( mVR ‘ 𝑡 ) ) ) }
27 1 2 26 cmpt ( 𝑡 ∈ V ↦ { 𝑎 ∈ ( mEx ‘ 𝑡 ) ∣ ( ( m0St ‘ 𝑎 ) ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ∧ Fun ( ( 2nd𝑎 ) ↾ ( mVR ‘ 𝑡 ) ) ) } )
28 0 27 wceq mSA = ( 𝑡 ∈ V ↦ { 𝑎 ∈ ( mEx ‘ 𝑡 ) ∣ ( ( m0St ‘ 𝑎 ) ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ∧ Fun ( ( 2nd𝑎 ) ↾ ( mVR ‘ 𝑡 ) ) ) } )