Metamath Proof Explorer


Definition df-msa

Description: Define the set of syntax axioms. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-msa mSA=tVamExt|m0StamAxt1stamVTtFun2nda-1mVRt

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmsa classmSA
1 vt setvart
2 cvv classV
3 va setvara
4 cmex classmEx
5 1 cv setvart
6 5 4 cfv classmExt
7 cm0s classm0St
8 3 cv setvara
9 8 7 cfv classm0Sta
10 cmax classmAx
11 5 10 cfv classmAxt
12 9 11 wcel wffm0StamAxt
13 c1st class1st
14 8 13 cfv class1sta
15 cmvt classmVT
16 5 15 cfv classmVTt
17 14 16 wcel wff1stamVTt
18 c2nd class2nd
19 8 18 cfv class2nda
20 19 ccnv class2nda-1
21 cmvar classmVR
22 5 21 cfv classmVRt
23 20 22 cres class2nda-1mVRt
24 23 wfun wffFun2nda-1mVRt
25 12 17 24 w3a wffm0StamAxt1stamVTtFun2nda-1mVRt
26 25 3 6 crab classamExt|m0StamAxt1stamVTtFun2nda-1mVRt
27 1 2 26 cmpt classtVamExt|m0StamAxt1stamVTtFun2nda-1mVRt
28 0 27 wceq wffmSA=tVamExt|m0StamAxt1stamVTtFun2nda-1mVRt