Metamath Proof Explorer


Definition df-m0s

Description: Define a function mapping expressions to statements. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-m0s m0St = ( 𝑎 ∈ V ↦ ⟨ ∅ , ∅ , 𝑎 ⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cm0s m0St
1 va 𝑎
2 cvv V
3 c0
4 1 cv 𝑎
5 3 3 4 cotp ⟨ ∅ , ∅ , 𝑎
6 1 2 5 cmpt ( 𝑎 ∈ V ↦ ⟨ ∅ , ∅ , 𝑎 ⟩ )
7 0 6 wceq m0St = ( 𝑎 ∈ V ↦ ⟨ ∅ , ∅ , 𝑎 ⟩ )