Metamath Proof Explorer


Definition df-metid

Description: Define the metric identification relation for a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion df-metid
|- ~Met = ( d e. U. ran PsMet |-> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmetid
 |-  ~Met
1 vd
 |-  d
2 cpsmet
 |-  PsMet
3 2 crn
 |-  ran PsMet
4 3 cuni
 |-  U. ran PsMet
5 vx
 |-  x
6 vy
 |-  y
7 5 cv
 |-  x
8 1 cv
 |-  d
9 8 cdm
 |-  dom d
10 9 cdm
 |-  dom dom d
11 7 10 wcel
 |-  x e. dom dom d
12 6 cv
 |-  y
13 12 10 wcel
 |-  y e. dom dom d
14 11 13 wa
 |-  ( x e. dom dom d /\ y e. dom dom d )
15 7 12 8 co
 |-  ( x d y )
16 cc0
 |-  0
17 15 16 wceq
 |-  ( x d y ) = 0
18 14 17 wa
 |-  ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 )
19 18 5 6 copab
 |-  { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) }
20 1 4 19 cmpt
 |-  ( d e. U. ran PsMet |-> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } )
21 0 20 wceq
 |-  ~Met = ( d e. U. ran PsMet |-> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } )