| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmetid |
|- ~Met |
| 1 |
|
vd |
|- d |
| 2 |
|
cpsmet |
|- PsMet |
| 3 |
2
|
crn |
|- ran PsMet |
| 4 |
3
|
cuni |
|- U. ran PsMet |
| 5 |
|
vx |
|- x |
| 6 |
|
vy |
|- y |
| 7 |
5
|
cv |
|- x |
| 8 |
1
|
cv |
|- d |
| 9 |
8
|
cdm |
|- dom d |
| 10 |
9
|
cdm |
|- dom dom d |
| 11 |
7 10
|
wcel |
|- x e. dom dom d |
| 12 |
6
|
cv |
|- y |
| 13 |
12 10
|
wcel |
|- y e. dom dom d |
| 14 |
11 13
|
wa |
|- ( x e. dom dom d /\ y e. dom dom d ) |
| 15 |
7 12 8
|
co |
|- ( x d y ) |
| 16 |
|
cc0 |
|- 0 |
| 17 |
15 16
|
wceq |
|- ( x d y ) = 0 |
| 18 |
14 17
|
wa |
|- ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) |
| 19 |
18 5 6
|
copab |
|- { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } |
| 20 |
1 4 19
|
cmpt |
|- ( d e. U. ran PsMet |-> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } ) |
| 21 |
0 20
|
wceq |
|- ~Met = ( d e. U. ran PsMet |-> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } ) |