Step |
Hyp |
Ref |
Expression |
0 |
|
cpstm |
|- pstoMet |
1 |
|
vd |
|- d |
2 |
|
cpsmet |
|- PsMet |
3 |
2
|
crn |
|- ran PsMet |
4 |
3
|
cuni |
|- U. ran PsMet |
5 |
|
va |
|- a |
6 |
1
|
cv |
|- d |
7 |
6
|
cdm |
|- dom d |
8 |
7
|
cdm |
|- dom dom d |
9 |
|
cmetid |
|- ~Met |
10 |
6 9
|
cfv |
|- ( ~Met ` d ) |
11 |
8 10
|
cqs |
|- ( dom dom d /. ( ~Met ` d ) ) |
12 |
|
vb |
|- b |
13 |
|
vz |
|- z |
14 |
|
vx |
|- x |
15 |
5
|
cv |
|- a |
16 |
|
vy |
|- y |
17 |
12
|
cv |
|- b |
18 |
13
|
cv |
|- z |
19 |
14
|
cv |
|- x |
20 |
16
|
cv |
|- y |
21 |
19 20 6
|
co |
|- ( x d y ) |
22 |
18 21
|
wceq |
|- z = ( x d y ) |
23 |
22 16 17
|
wrex |
|- E. y e. b z = ( x d y ) |
24 |
23 14 15
|
wrex |
|- E. x e. a E. y e. b z = ( x d y ) |
25 |
24 13
|
cab |
|- { z | E. x e. a E. y e. b z = ( x d y ) } |
26 |
25
|
cuni |
|- U. { z | E. x e. a E. y e. b z = ( x d y ) } |
27 |
5 12 11 11 26
|
cmpo |
|- ( a e. ( dom dom d /. ( ~Met ` d ) ) , b e. ( dom dom d /. ( ~Met ` d ) ) |-> U. { z | E. x e. a E. y e. b z = ( x d y ) } ) |
28 |
1 4 27
|
cmpt |
|- ( d e. U. ran PsMet |-> ( a e. ( dom dom d /. ( ~Met ` d ) ) , b e. ( dom dom d /. ( ~Met ` d ) ) |-> U. { z | E. x e. a E. y e. b z = ( x d y ) } ) ) |
29 |
0 28
|
wceq |
|- pstoMet = ( d e. U. ran PsMet |-> ( a e. ( dom dom d /. ( ~Met ` d ) ) , b e. ( dom dom d /. ( ~Met ` d ) ) |-> U. { z | E. x e. a E. y e. b z = ( x d y ) } ) ) |