| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpstm |
|- pstoMet |
| 1 |
|
vd |
|- d |
| 2 |
|
cpsmet |
|- PsMet |
| 3 |
2
|
crn |
|- ran PsMet |
| 4 |
3
|
cuni |
|- U. ran PsMet |
| 5 |
|
va |
|- a |
| 6 |
1
|
cv |
|- d |
| 7 |
6
|
cdm |
|- dom d |
| 8 |
7
|
cdm |
|- dom dom d |
| 9 |
|
cmetid |
|- ~Met |
| 10 |
6 9
|
cfv |
|- ( ~Met ` d ) |
| 11 |
8 10
|
cqs |
|- ( dom dom d /. ( ~Met ` d ) ) |
| 12 |
|
vb |
|- b |
| 13 |
|
vz |
|- z |
| 14 |
|
vx |
|- x |
| 15 |
5
|
cv |
|- a |
| 16 |
|
vy |
|- y |
| 17 |
12
|
cv |
|- b |
| 18 |
13
|
cv |
|- z |
| 19 |
14
|
cv |
|- x |
| 20 |
16
|
cv |
|- y |
| 21 |
19 20 6
|
co |
|- ( x d y ) |
| 22 |
18 21
|
wceq |
|- z = ( x d y ) |
| 23 |
22 16 17
|
wrex |
|- E. y e. b z = ( x d y ) |
| 24 |
23 14 15
|
wrex |
|- E. x e. a E. y e. b z = ( x d y ) |
| 25 |
24 13
|
cab |
|- { z | E. x e. a E. y e. b z = ( x d y ) } |
| 26 |
25
|
cuni |
|- U. { z | E. x e. a E. y e. b z = ( x d y ) } |
| 27 |
5 12 11 11 26
|
cmpo |
|- ( a e. ( dom dom d /. ( ~Met ` d ) ) , b e. ( dom dom d /. ( ~Met ` d ) ) |-> U. { z | E. x e. a E. y e. b z = ( x d y ) } ) |
| 28 |
1 4 27
|
cmpt |
|- ( d e. U. ran PsMet |-> ( a e. ( dom dom d /. ( ~Met ` d ) ) , b e. ( dom dom d /. ( ~Met ` d ) ) |-> U. { z | E. x e. a E. y e. b z = ( x d y ) } ) ) |
| 29 |
0 28
|
wceq |
|- pstoMet = ( d e. U. ran PsMet |-> ( a e. ( dom dom d /. ( ~Met ` d ) ) , b e. ( dom dom d /. ( ~Met ` d ) ) |-> U. { z | E. x e. a E. y e. b z = ( x d y ) } ) ) |