Metamath Proof Explorer


Definition df-pstm

Description: Define the metric induced by a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion df-pstm pstoMet = d ran PsMet a dom dom d / ~ Met d , b dom dom d / ~ Met d z | x a y b z = x d y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpstm class pstoMet
1 vd setvar d
2 cpsmet class PsMet
3 2 crn class ran PsMet
4 3 cuni class ran PsMet
5 va setvar a
6 1 cv setvar d
7 6 cdm class dom d
8 7 cdm class dom dom d
9 cmetid class ~ Met
10 6 9 cfv class ~ Met d
11 8 10 cqs class dom dom d / ~ Met d
12 vb setvar b
13 vz setvar z
14 vx setvar x
15 5 cv setvar a
16 vy setvar y
17 12 cv setvar b
18 13 cv setvar z
19 14 cv setvar x
20 16 cv setvar y
21 19 20 6 co class x d y
22 18 21 wceq wff z = x d y
23 22 16 17 wrex wff y b z = x d y
24 23 14 15 wrex wff x a y b z = x d y
25 24 13 cab class z | x a y b z = x d y
26 25 cuni class z | x a y b z = x d y
27 5 12 11 11 26 cmpo class a dom dom d / ~ Met d , b dom dom d / ~ Met d z | x a y b z = x d y
28 1 4 27 cmpt class d ran PsMet a dom dom d / ~ Met d , b dom dom d / ~ Met d z | x a y b z = x d y
29 0 28 wceq wff pstoMet = d ran PsMet a dom dom d / ~ Met d , b dom dom d / ~ Met d z | x a y b z = x d y