Metamath Proof Explorer


Theorem metidval

Description: Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion metidval D PsMet X ~ Met D = x y | x X y X x D y = 0

Proof

Step Hyp Ref Expression
1 df-metid ~ Met = d ran PsMet x y | x dom dom d y dom dom d x d y = 0
2 simpr D PsMet X d = D d = D
3 2 dmeqd D PsMet X d = D dom d = dom D
4 3 dmeqd D PsMet X d = D dom dom d = dom dom D
5 psmetdmdm D PsMet X X = dom dom D
6 5 adantr D PsMet X d = D X = dom dom D
7 4 6 eqtr4d D PsMet X d = D dom dom d = X
8 7 eleq2d D PsMet X d = D x dom dom d x X
9 7 eleq2d D PsMet X d = D y dom dom d y X
10 8 9 anbi12d D PsMet X d = D x dom dom d y dom dom d x X y X
11 2 oveqd D PsMet X d = D x d y = x D y
12 11 eqeq1d D PsMet X d = D x d y = 0 x D y = 0
13 10 12 anbi12d D PsMet X d = D x dom dom d y dom dom d x d y = 0 x X y X x D y = 0
14 13 opabbidv D PsMet X d = D x y | x dom dom d y dom dom d x d y = 0 = x y | x X y X x D y = 0
15 elfvunirn D PsMet X D ran PsMet
16 opabssxp x y | x X y X x D y = 0 X × X
17 elfvex D PsMet X X V
18 17 17 xpexd D PsMet X X × X V
19 ssexg x y | x X y X x D y = 0 X × X X × X V x y | x X y X x D y = 0 V
20 16 18 19 sylancr D PsMet X x y | x X y X x D y = 0 V
21 1 14 15 20 fvmptd2 D PsMet X ~ Met D = x y | x X y X x D y = 0