Metamath Proof Explorer


Theorem metidval

Description: Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion metidval D PsMet X ~ Met D = x y | x X y X x D y = 0

Proof

Step Hyp Ref Expression
1 df-metid ~ Met = d ran PsMet x y | x dom dom d y dom dom d x d y = 0
2 1 a1i D PsMet X ~ Met = d ran PsMet x y | x dom dom d y dom dom d x d y = 0
3 simpr D PsMet X d = D d = D
4 3 dmeqd D PsMet X d = D dom d = dom D
5 4 dmeqd D PsMet X d = D dom dom d = dom dom D
6 psmetdmdm D PsMet X X = dom dom D
7 6 adantr D PsMet X d = D X = dom dom D
8 5 7 eqtr4d D PsMet X d = D dom dom d = X
9 8 eleq2d D PsMet X d = D x dom dom d x X
10 8 eleq2d D PsMet X d = D y dom dom d y X
11 9 10 anbi12d D PsMet X d = D x dom dom d y dom dom d x X y X
12 3 oveqd D PsMet X d = D x d y = x D y
13 12 eqeq1d D PsMet X d = D x d y = 0 x D y = 0
14 11 13 anbi12d D PsMet X d = D x dom dom d y dom dom d x d y = 0 x X y X x D y = 0
15 14 opabbidv D PsMet X d = D x y | x dom dom d y dom dom d x d y = 0 = x y | x X y X x D y = 0
16 elfvdm D PsMet X X dom PsMet
17 fveq2 x = X PsMet x = PsMet X
18 17 eleq2d x = X D PsMet x D PsMet X
19 18 rspcev X dom PsMet D PsMet X x dom PsMet D PsMet x
20 16 19 mpancom D PsMet X x dom PsMet D PsMet x
21 df-psmet PsMet = x V d * x × x | y x y d y = 0 z x w x y d z w d y + 𝑒 w d z
22 21 funmpt2 Fun PsMet
23 elunirn Fun PsMet D ran PsMet x dom PsMet D PsMet x
24 22 23 ax-mp D ran PsMet x dom PsMet D PsMet x
25 20 24 sylibr D PsMet X D ran PsMet
26 opabssxp x y | x X y X x D y = 0 X × X
27 elfvex D PsMet X X V
28 27 27 xpexd D PsMet X X × X V
29 ssexg x y | x X y X x D y = 0 X × X X × X V x y | x X y X x D y = 0 V
30 26 28 29 sylancr D PsMet X x y | x X y X x D y = 0 V
31 2 15 25 30 fvmptd D PsMet X ~ Met D = x y | x X y X x D y = 0