Metamath Proof Explorer


Definition df-metid

Description: Define the metric identification relation for a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion df-metid ~ Met = d ran PsMet x y | x dom dom d y dom dom d x d y = 0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmetid class ~ Met
1 vd setvar d
2 cpsmet class PsMet
3 2 crn class ran PsMet
4 3 cuni class ran PsMet
5 vx setvar x
6 vy setvar y
7 5 cv setvar x
8 1 cv setvar d
9 8 cdm class dom d
10 9 cdm class dom dom d
11 7 10 wcel wff x dom dom d
12 6 cv setvar y
13 12 10 wcel wff y dom dom d
14 11 13 wa wff x dom dom d y dom dom d
15 7 12 8 co class x d y
16 cc0 class 0
17 15 16 wceq wff x d y = 0
18 14 17 wa wff x dom dom d y dom dom d x d y = 0
19 18 5 6 copab class x y | x dom dom d y dom dom d x d y = 0
20 1 4 19 cmpt class d ran PsMet x y | x dom dom d y dom dom d x d y = 0
21 0 20 wceq wff ~ Met = d ran PsMet x y | x dom dom d y dom dom d x d y = 0