Step |
Hyp |
Ref |
Expression |
0 |
|
cmetid |
⊢ ~Met |
1 |
|
vd |
⊢ 𝑑 |
2 |
|
cpsmet |
⊢ PsMet |
3 |
2
|
crn |
⊢ ran PsMet |
4 |
3
|
cuni |
⊢ ∪ ran PsMet |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
vy |
⊢ 𝑦 |
7 |
5
|
cv |
⊢ 𝑥 |
8 |
1
|
cv |
⊢ 𝑑 |
9 |
8
|
cdm |
⊢ dom 𝑑 |
10 |
9
|
cdm |
⊢ dom dom 𝑑 |
11 |
7 10
|
wcel |
⊢ 𝑥 ∈ dom dom 𝑑 |
12 |
6
|
cv |
⊢ 𝑦 |
13 |
12 10
|
wcel |
⊢ 𝑦 ∈ dom dom 𝑑 |
14 |
11 13
|
wa |
⊢ ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) |
15 |
7 12 8
|
co |
⊢ ( 𝑥 𝑑 𝑦 ) |
16 |
|
cc0 |
⊢ 0 |
17 |
15 16
|
wceq |
⊢ ( 𝑥 𝑑 𝑦 ) = 0 |
18 |
14 17
|
wa |
⊢ ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) |
19 |
18 5 6
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) } |
20 |
1 4 19
|
cmpt |
⊢ ( 𝑑 ∈ ∪ ran PsMet ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) } ) |
21 |
0 20
|
wceq |
⊢ ~Met = ( 𝑑 ∈ ∪ ran PsMet ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) } ) |