| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpstm |
⊢ pstoMet |
| 1 |
|
vd |
⊢ 𝑑 |
| 2 |
|
cpsmet |
⊢ PsMet |
| 3 |
2
|
crn |
⊢ ran PsMet |
| 4 |
3
|
cuni |
⊢ ∪ ran PsMet |
| 5 |
|
va |
⊢ 𝑎 |
| 6 |
1
|
cv |
⊢ 𝑑 |
| 7 |
6
|
cdm |
⊢ dom 𝑑 |
| 8 |
7
|
cdm |
⊢ dom dom 𝑑 |
| 9 |
|
cmetid |
⊢ ~Met |
| 10 |
6 9
|
cfv |
⊢ ( ~Met ‘ 𝑑 ) |
| 11 |
8 10
|
cqs |
⊢ ( dom dom 𝑑 / ( ~Met ‘ 𝑑 ) ) |
| 12 |
|
vb |
⊢ 𝑏 |
| 13 |
|
vz |
⊢ 𝑧 |
| 14 |
|
vx |
⊢ 𝑥 |
| 15 |
5
|
cv |
⊢ 𝑎 |
| 16 |
|
vy |
⊢ 𝑦 |
| 17 |
12
|
cv |
⊢ 𝑏 |
| 18 |
13
|
cv |
⊢ 𝑧 |
| 19 |
14
|
cv |
⊢ 𝑥 |
| 20 |
16
|
cv |
⊢ 𝑦 |
| 21 |
19 20 6
|
co |
⊢ ( 𝑥 𝑑 𝑦 ) |
| 22 |
18 21
|
wceq |
⊢ 𝑧 = ( 𝑥 𝑑 𝑦 ) |
| 23 |
22 16 17
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) |
| 24 |
23 14 15
|
wrex |
⊢ ∃ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) |
| 25 |
24 13
|
cab |
⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } |
| 26 |
25
|
cuni |
⊢ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } |
| 27 |
5 12 11 11 26
|
cmpo |
⊢ ( 𝑎 ∈ ( dom dom 𝑑 / ( ~Met ‘ 𝑑 ) ) , 𝑏 ∈ ( dom dom 𝑑 / ( ~Met ‘ 𝑑 ) ) ↦ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } ) |
| 28 |
1 4 27
|
cmpt |
⊢ ( 𝑑 ∈ ∪ ran PsMet ↦ ( 𝑎 ∈ ( dom dom 𝑑 / ( ~Met ‘ 𝑑 ) ) , 𝑏 ∈ ( dom dom 𝑑 / ( ~Met ‘ 𝑑 ) ) ↦ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } ) ) |
| 29 |
0 28
|
wceq |
⊢ pstoMet = ( 𝑑 ∈ ∪ ran PsMet ↦ ( 𝑎 ∈ ( dom dom 𝑑 / ( ~Met ‘ 𝑑 ) ) , 𝑏 ∈ ( dom dom 𝑑 / ( ~Met ‘ 𝑑 ) ) ↦ ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } ) ) |