Metamath Proof Explorer


Definition df-pstm

Description: Define the metric induced by a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion df-pstm pstoMet = ( 𝑑 ran PsMet ↦ ( 𝑎 ∈ ( dom dom 𝑑 / ( ~Met𝑑 ) ) , 𝑏 ∈ ( dom dom 𝑑 / ( ~Met𝑑 ) ) ↦ { 𝑧 ∣ ∃ 𝑥𝑎𝑦𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpstm pstoMet
1 vd 𝑑
2 cpsmet PsMet
3 2 crn ran PsMet
4 3 cuni ran PsMet
5 va 𝑎
6 1 cv 𝑑
7 6 cdm dom 𝑑
8 7 cdm dom dom 𝑑
9 cmetid ~Met
10 6 9 cfv ( ~Met𝑑 )
11 8 10 cqs ( dom dom 𝑑 / ( ~Met𝑑 ) )
12 vb 𝑏
13 vz 𝑧
14 vx 𝑥
15 5 cv 𝑎
16 vy 𝑦
17 12 cv 𝑏
18 13 cv 𝑧
19 14 cv 𝑥
20 16 cv 𝑦
21 19 20 6 co ( 𝑥 𝑑 𝑦 )
22 18 21 wceq 𝑧 = ( 𝑥 𝑑 𝑦 )
23 22 16 17 wrex 𝑦𝑏 𝑧 = ( 𝑥 𝑑 𝑦 )
24 23 14 15 wrex 𝑥𝑎𝑦𝑏 𝑧 = ( 𝑥 𝑑 𝑦 )
25 24 13 cab { 𝑧 ∣ ∃ 𝑥𝑎𝑦𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) }
26 25 cuni { 𝑧 ∣ ∃ 𝑥𝑎𝑦𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) }
27 5 12 11 11 26 cmpo ( 𝑎 ∈ ( dom dom 𝑑 / ( ~Met𝑑 ) ) , 𝑏 ∈ ( dom dom 𝑑 / ( ~Met𝑑 ) ) ↦ { 𝑧 ∣ ∃ 𝑥𝑎𝑦𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } )
28 1 4 27 cmpt ( 𝑑 ran PsMet ↦ ( 𝑎 ∈ ( dom dom 𝑑 / ( ~Met𝑑 ) ) , 𝑏 ∈ ( dom dom 𝑑 / ( ~Met𝑑 ) ) ↦ { 𝑧 ∣ ∃ 𝑥𝑎𝑦𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } ) )
29 0 28 wceq pstoMet = ( 𝑑 ran PsMet ↦ ( 𝑎 ∈ ( dom dom 𝑑 / ( ~Met𝑑 ) ) , 𝑏 ∈ ( dom dom 𝑑 / ( ~Met𝑑 ) ) ↦ { 𝑧 ∣ ∃ 𝑥𝑎𝑦𝑏 𝑧 = ( 𝑥 𝑑 𝑦 ) } ) )