Step |
Hyp |
Ref |
Expression |
1 |
|
df-metid |
⊢ ~Met = ( 𝑑 ∈ ∪ ran PsMet ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) } ) |
2 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
3 |
2
|
dmeqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom 𝑑 = dom 𝐷 ) |
4 |
3
|
dmeqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = dom dom 𝐷 ) |
5 |
|
psmetdmdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑋 = dom dom 𝐷 ) |
7 |
4 6
|
eqtr4d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
8 |
7
|
eleq2d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ∈ dom dom 𝑑 ↔ 𝑥 ∈ 𝑋 ) ) |
9 |
7
|
eleq2d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑦 ∈ dom dom 𝑑 ↔ 𝑦 ∈ 𝑋 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
11 |
2
|
oveqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
12 |
11
|
eqeq1d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ ( 𝑥 𝐷 𝑦 ) = 0 ) ) |
13 |
10 12
|
anbi12d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) ) ) |
14 |
13
|
opabbidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ) |
15 |
|
elfvunirn |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 ∈ ∪ ran PsMet ) |
16 |
|
opabssxp |
⊢ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ⊆ ( 𝑋 × 𝑋 ) |
17 |
|
elfvex |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) |
18 |
17 17
|
xpexd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ V ) |
19 |
|
ssexg |
⊢ ( ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ⊆ ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ V ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ∈ V ) |
20 |
16 18 19
|
sylancr |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ∈ V ) |
21 |
1 14 15 20
|
fvmptd2 |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ) |