| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-metid |
⊢ ~Met = ( 𝑑 ∈ ∪ ran PsMet ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) } ) |
| 2 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
| 3 |
2
|
dmeqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom 𝑑 = dom 𝐷 ) |
| 4 |
3
|
dmeqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = dom dom 𝐷 ) |
| 5 |
|
psmetdmdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑋 = dom dom 𝐷 ) |
| 7 |
4 6
|
eqtr4d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
| 8 |
7
|
eleq2d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ∈ dom dom 𝑑 ↔ 𝑥 ∈ 𝑋 ) ) |
| 9 |
7
|
eleq2d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑦 ∈ dom dom 𝑑 ↔ 𝑦 ∈ 𝑋 ) ) |
| 10 |
8 9
|
anbi12d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 11 |
2
|
oveqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ ( 𝑥 𝐷 𝑦 ) = 0 ) ) |
| 13 |
10 12
|
anbi12d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) ) ) |
| 14 |
13
|
opabbidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑 ) ∧ ( 𝑥 𝑑 𝑦 ) = 0 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ) |
| 15 |
|
elfvunirn |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 ∈ ∪ ran PsMet ) |
| 16 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ⊆ ( 𝑋 × 𝑋 ) |
| 17 |
|
elfvex |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) |
| 18 |
17 17
|
xpexd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ V ) |
| 19 |
|
ssexg |
⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ⊆ ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ∈ V ) |
| 20 |
16 18 19
|
sylancr |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ∈ V ) |
| 21 |
1 14 15 20
|
fvmptd2 |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑦 ) = 0 ) } ) |