Step |
Hyp |
Ref |
Expression |
1 |
|
df-metid |
|- ~Met = ( d e. U. ran PsMet |-> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } ) |
2 |
|
simpr |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> d = D ) |
3 |
2
|
dmeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom d = dom D ) |
4 |
3
|
dmeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = dom dom D ) |
5 |
|
psmetdmdm |
|- ( D e. ( PsMet ` X ) -> X = dom dom D ) |
6 |
5
|
adantr |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> X = dom dom D ) |
7 |
4 6
|
eqtr4d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = X ) |
8 |
7
|
eleq2d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( x e. dom dom d <-> x e. X ) ) |
9 |
7
|
eleq2d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( y e. dom dom d <-> y e. X ) ) |
10 |
8 9
|
anbi12d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( x e. dom dom d /\ y e. dom dom d ) <-> ( x e. X /\ y e. X ) ) ) |
11 |
2
|
oveqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( x d y ) = ( x D y ) ) |
12 |
11
|
eqeq1d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( x d y ) = 0 <-> ( x D y ) = 0 ) ) |
13 |
10 12
|
anbi12d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) <-> ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) ) ) |
14 |
13
|
opabbidv |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } = { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } ) |
15 |
|
elfvunirn |
|- ( D e. ( PsMet ` X ) -> D e. U. ran PsMet ) |
16 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } C_ ( X X. X ) |
17 |
|
elfvex |
|- ( D e. ( PsMet ` X ) -> X e. _V ) |
18 |
17 17
|
xpexd |
|- ( D e. ( PsMet ` X ) -> ( X X. X ) e. _V ) |
19 |
|
ssexg |
|- ( ( { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } C_ ( X X. X ) /\ ( X X. X ) e. _V ) -> { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } e. _V ) |
20 |
16 18 19
|
sylancr |
|- ( D e. ( PsMet ` X ) -> { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } e. _V ) |
21 |
1 14 15 20
|
fvmptd2 |
|- ( D e. ( PsMet ` X ) -> ( ~Met ` D ) = { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } ) |