| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-metid |
|- ~Met = ( d e. U. ran PsMet |-> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } ) |
| 2 |
|
simpr |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> d = D ) |
| 3 |
2
|
dmeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom d = dom D ) |
| 4 |
3
|
dmeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = dom dom D ) |
| 5 |
|
psmetdmdm |
|- ( D e. ( PsMet ` X ) -> X = dom dom D ) |
| 6 |
5
|
adantr |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> X = dom dom D ) |
| 7 |
4 6
|
eqtr4d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = X ) |
| 8 |
7
|
eleq2d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( x e. dom dom d <-> x e. X ) ) |
| 9 |
7
|
eleq2d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( y e. dom dom d <-> y e. X ) ) |
| 10 |
8 9
|
anbi12d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( x e. dom dom d /\ y e. dom dom d ) <-> ( x e. X /\ y e. X ) ) ) |
| 11 |
2
|
oveqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( x d y ) = ( x D y ) ) |
| 12 |
11
|
eqeq1d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( x d y ) = 0 <-> ( x D y ) = 0 ) ) |
| 13 |
10 12
|
anbi12d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) <-> ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) ) ) |
| 14 |
13
|
opabbidv |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> { <. x , y >. | ( ( x e. dom dom d /\ y e. dom dom d ) /\ ( x d y ) = 0 ) } = { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } ) |
| 15 |
|
elfvunirn |
|- ( D e. ( PsMet ` X ) -> D e. U. ran PsMet ) |
| 16 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } C_ ( X X. X ) |
| 17 |
|
elfvex |
|- ( D e. ( PsMet ` X ) -> X e. _V ) |
| 18 |
17 17
|
xpexd |
|- ( D e. ( PsMet ` X ) -> ( X X. X ) e. _V ) |
| 19 |
|
ssexg |
|- ( ( { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } C_ ( X X. X ) /\ ( X X. X ) e. _V ) -> { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } e. _V ) |
| 20 |
16 18 19
|
sylancr |
|- ( D e. ( PsMet ` X ) -> { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } e. _V ) |
| 21 |
1 14 15 20
|
fvmptd2 |
|- ( D e. ( PsMet ` X ) -> ( ~Met ` D ) = { <. x , y >. | ( ( x e. X /\ y e. X ) /\ ( x D y ) = 0 ) } ) |