Metamath Proof Explorer


Theorem psmetdmdm

Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion psmetdmdm DPsMetXX=domdomD

Proof

Step Hyp Ref Expression
1 elfvex DPsMetXXV
2 ispsmet XVDPsMetXD:X×X*xXxDx=0yXzXxDyzDx+𝑒zDy
3 2 biimpa XVDPsMetXD:X×X*xXxDx=0yXzXxDyzDx+𝑒zDy
4 1 3 mpancom DPsMetXD:X×X*xXxDx=0yXzXxDyzDx+𝑒zDy
5 4 simpld DPsMetXD:X×X*
6 fdm D:X×X*domD=X×X
7 6 dmeqd D:X×X*domdomD=domX×X
8 5 7 syl DPsMetXdomdomD=domX×X
9 dmxpid domX×X=X
10 8 9 eqtr2di DPsMetXX=domdomD