| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cF |  |-  F | 
						
							| 1 | 0 | cnorec2 |  |-  norec2 ( F ) | 
						
							| 2 |  | va |  |-  a | 
						
							| 3 |  | vb |  |-  b | 
						
							| 4 | 2 | cv |  |-  a | 
						
							| 5 |  | csur |  |-  No | 
						
							| 6 | 5 5 | cxp |  |-  ( No X. No ) | 
						
							| 7 | 4 6 | wcel |  |-  a e. ( No X. No ) | 
						
							| 8 | 3 | cv |  |-  b | 
						
							| 9 | 8 6 | wcel |  |-  b e. ( No X. No ) | 
						
							| 10 |  | c1st |  |-  1st | 
						
							| 11 | 4 10 | cfv |  |-  ( 1st ` a ) | 
						
							| 12 |  | vc |  |-  c | 
						
							| 13 |  | vd |  |-  d | 
						
							| 14 | 12 | cv |  |-  c | 
						
							| 15 |  | cleft |  |-  _Left | 
						
							| 16 | 13 | cv |  |-  d | 
						
							| 17 | 16 15 | cfv |  |-  ( _Left ` d ) | 
						
							| 18 |  | cright |  |-  _Right | 
						
							| 19 | 16 18 | cfv |  |-  ( _Right ` d ) | 
						
							| 20 | 17 19 | cun |  |-  ( ( _Left ` d ) u. ( _Right ` d ) ) | 
						
							| 21 | 14 20 | wcel |  |-  c e. ( ( _Left ` d ) u. ( _Right ` d ) ) | 
						
							| 22 | 21 12 13 | copab |  |-  { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } | 
						
							| 23 | 8 10 | cfv |  |-  ( 1st ` b ) | 
						
							| 24 | 11 23 22 | wbr |  |-  ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) | 
						
							| 25 | 11 23 | wceq |  |-  ( 1st ` a ) = ( 1st ` b ) | 
						
							| 26 | 24 25 | wo |  |-  ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) | 
						
							| 27 |  | c2nd |  |-  2nd | 
						
							| 28 | 4 27 | cfv |  |-  ( 2nd ` a ) | 
						
							| 29 | 8 27 | cfv |  |-  ( 2nd ` b ) | 
						
							| 30 | 28 29 22 | wbr |  |-  ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) | 
						
							| 31 | 28 29 | wceq |  |-  ( 2nd ` a ) = ( 2nd ` b ) | 
						
							| 32 | 30 31 | wo |  |-  ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) | 
						
							| 33 | 4 8 | wne |  |-  a =/= b | 
						
							| 34 | 26 32 33 | w3a |  |-  ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) | 
						
							| 35 | 7 9 34 | w3a |  |-  ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) | 
						
							| 36 | 35 2 3 | copab |  |-  { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } | 
						
							| 37 | 6 36 0 | cfrecs |  |-  frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) | 
						
							| 38 | 1 37 | wceq |  |-  norec2 ( F ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) |