Metamath Proof Explorer


Definition df-norec2

Description: Define surreal recursion on two variables. This function is key to the development of most of surreal numbers. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion df-norec2 norec2 ( 𝐹 ) = frecs ( { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ ( ( ( 1st𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 1st𝑏 ) ∨ ( 1st𝑎 ) = ( 1st𝑏 ) ) ∧ ( ( 2nd𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 2nd𝑏 ) ∨ ( 2nd𝑎 ) = ( 2nd𝑏 ) ) ∧ 𝑎𝑏 ) ) } , ( No × No ) , 𝐹 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF 𝐹
1 0 cnorec2 norec2 ( 𝐹 )
2 va 𝑎
3 vb 𝑏
4 2 cv 𝑎
5 csur No
6 5 5 cxp ( No × No )
7 4 6 wcel 𝑎 ∈ ( No × No )
8 3 cv 𝑏
9 8 6 wcel 𝑏 ∈ ( No × No )
10 c1st 1st
11 4 10 cfv ( 1st𝑎 )
12 vc 𝑐
13 vd 𝑑
14 12 cv 𝑐
15 cleft L
16 13 cv 𝑑
17 16 15 cfv ( L ‘ 𝑑 )
18 cright R
19 16 18 cfv ( R ‘ 𝑑 )
20 17 19 cun ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) )
21 14 20 wcel 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) )
22 21 12 13 copab { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) }
23 8 10 cfv ( 1st𝑏 )
24 11 23 22 wbr ( 1st𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 1st𝑏 )
25 11 23 wceq ( 1st𝑎 ) = ( 1st𝑏 )
26 24 25 wo ( ( 1st𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 1st𝑏 ) ∨ ( 1st𝑎 ) = ( 1st𝑏 ) )
27 c2nd 2nd
28 4 27 cfv ( 2nd𝑎 )
29 8 27 cfv ( 2nd𝑏 )
30 28 29 22 wbr ( 2nd𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 2nd𝑏 )
31 28 29 wceq ( 2nd𝑎 ) = ( 2nd𝑏 )
32 30 31 wo ( ( 2nd𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 2nd𝑏 ) ∨ ( 2nd𝑎 ) = ( 2nd𝑏 ) )
33 4 8 wne 𝑎𝑏
34 26 32 33 w3a ( ( ( 1st𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 1st𝑏 ) ∨ ( 1st𝑎 ) = ( 1st𝑏 ) ) ∧ ( ( 2nd𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 2nd𝑏 ) ∨ ( 2nd𝑎 ) = ( 2nd𝑏 ) ) ∧ 𝑎𝑏 )
35 7 9 34 w3a ( 𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ ( ( ( 1st𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 1st𝑏 ) ∨ ( 1st𝑎 ) = ( 1st𝑏 ) ) ∧ ( ( 2nd𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 2nd𝑏 ) ∨ ( 2nd𝑎 ) = ( 2nd𝑏 ) ) ∧ 𝑎𝑏 ) )
36 35 2 3 copab { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ ( ( ( 1st𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 1st𝑏 ) ∨ ( 1st𝑎 ) = ( 1st𝑏 ) ) ∧ ( ( 2nd𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 2nd𝑏 ) ∨ ( 2nd𝑎 ) = ( 2nd𝑏 ) ) ∧ 𝑎𝑏 ) ) }
37 6 36 0 cfrecs frecs ( { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ ( ( ( 1st𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 1st𝑏 ) ∨ ( 1st𝑎 ) = ( 1st𝑏 ) ) ∧ ( ( 2nd𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 2nd𝑏 ) ∨ ( 2nd𝑎 ) = ( 2nd𝑏 ) ) ∧ 𝑎𝑏 ) ) } , ( No × No ) , 𝐹 )
38 1 37 wceq norec2 ( 𝐹 ) = frecs ( { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ ( ( ( 1st𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 1st𝑏 ) ∨ ( 1st𝑎 ) = ( 1st𝑏 ) ) ∧ ( ( 2nd𝑎 ) { ⟨ 𝑐 , 𝑑 ⟩ ∣ 𝑐 ∈ ( ( L ‘ 𝑑 ) ∪ ( R ‘ 𝑑 ) ) } ( 2nd𝑏 ) ∨ ( 2nd𝑎 ) = ( 2nd𝑏 ) ) ∧ 𝑎𝑏 ) ) } , ( No × No ) , 𝐹 )