Metamath Proof Explorer


Definition df-norec2

Description: Define surreal recursion on two variables. This function is key to the development of most of surreal numbers. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion df-norec2 Could not format assertion : No typesetting found for |- norec2 ( F ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF class F
1 0 cnorec2 Could not format norec2 ( F ) : No typesetting found for class norec2 ( F ) with typecode class
2 va setvar a
3 vb setvar b
4 2 cv setvar a
5 csur class No
6 5 5 cxp class No × No
7 4 6 wcel wff a No × No
8 3 cv setvar b
9 8 6 wcel wff b No × No
10 c1st class 1 st
11 4 10 cfv class 1 st a
12 vc setvar c
13 vd setvar d
14 12 cv setvar c
15 cleft class L
16 13 cv setvar d
17 16 15 cfv class L d
18 cright class R
19 16 18 cfv class R d
20 17 19 cun class L d R d
21 14 20 wcel wff c L d R d
22 21 12 13 copab class c d | c L d R d
23 8 10 cfv class 1 st b
24 11 23 22 wbr wff 1 st a c d | c L d R d 1 st b
25 11 23 wceq wff 1 st a = 1 st b
26 24 25 wo wff 1 st a c d | c L d R d 1 st b 1 st a = 1 st b
27 c2nd class 2 nd
28 4 27 cfv class 2 nd a
29 8 27 cfv class 2 nd b
30 28 29 22 wbr wff 2 nd a c d | c L d R d 2 nd b
31 28 29 wceq wff 2 nd a = 2 nd b
32 30 31 wo wff 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b
33 4 8 wne wff a b
34 26 32 33 w3a wff 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b
35 7 9 34 w3a wff a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b
36 35 2 3 copab class a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b
37 6 36 0 cfrecs class frecs a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No F
38 1 37 wceq Could not format norec2 ( F ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) : No typesetting found for wff norec2 ( F ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) with typecode wff