Description: A function mapping Pell discriminants to the corresponding fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014) (Revised by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pellfund | |- PellFund = ( x e. ( NN \ []NN ) |-> inf ( { z e. ( Pell14QR ` x ) | 1 < z } , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpellfund | |- PellFund |
|
| 1 | vx | |- x |
|
| 2 | cn | |- NN |
|
| 3 | csquarenn | |- []NN |
|
| 4 | 2 3 | cdif | |- ( NN \ []NN ) |
| 5 | vz | |- z |
|
| 6 | cpell14qr | |- Pell14QR |
|
| 7 | 1 | cv | |- x |
| 8 | 7 6 | cfv | |- ( Pell14QR ` x ) |
| 9 | c1 | |- 1 |
|
| 10 | clt | |- < |
|
| 11 | 5 | cv | |- z |
| 12 | 9 11 10 | wbr | |- 1 < z |
| 13 | 12 5 8 | crab | |- { z e. ( Pell14QR ` x ) | 1 < z } |
| 14 | cr | |- RR |
|
| 15 | 13 14 10 | cinf | |- inf ( { z e. ( Pell14QR ` x ) | 1 < z } , RR , < ) |
| 16 | 1 4 15 | cmpt | |- ( x e. ( NN \ []NN ) |-> inf ( { z e. ( Pell14QR ` x ) | 1 < z } , RR , < ) ) |
| 17 | 0 16 | wceq | |- PellFund = ( x e. ( NN \ []NN ) |-> inf ( { z e. ( Pell14QR ` x ) | 1 < z } , RR , < ) ) |