| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( a = D -> ( sqrt ` a ) = ( sqrt ` D ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( a = D -> ( ( sqrt ` a ) x. w ) = ( ( sqrt ` D ) x. w ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( a = D -> ( z + ( ( sqrt ` a ) x. w ) ) = ( z + ( ( sqrt ` D ) x. w ) ) ) | 
						
							| 4 | 3 | eqeq2d |  |-  ( a = D -> ( y = ( z + ( ( sqrt ` a ) x. w ) ) <-> y = ( z + ( ( sqrt ` D ) x. w ) ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( a = D -> ( a x. ( w ^ 2 ) ) = ( D x. ( w ^ 2 ) ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( a = D -> ( ( z ^ 2 ) - ( a x. ( w ^ 2 ) ) ) = ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( a = D -> ( ( ( z ^ 2 ) - ( a x. ( w ^ 2 ) ) ) = 1 <-> ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) ) | 
						
							| 8 | 4 7 | anbi12d |  |-  ( a = D -> ( ( y = ( z + ( ( sqrt ` a ) x. w ) ) /\ ( ( z ^ 2 ) - ( a x. ( w ^ 2 ) ) ) = 1 ) <-> ( y = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 9 | 8 | 2rexbidv |  |-  ( a = D -> ( E. z e. NN0 E. w e. NN0 ( y = ( z + ( ( sqrt ` a ) x. w ) ) /\ ( ( z ^ 2 ) - ( a x. ( w ^ 2 ) ) ) = 1 ) <-> E. z e. NN0 E. w e. NN0 ( y = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 10 | 9 | rabbidv |  |-  ( a = D -> { y e. RR | E. z e. NN0 E. w e. NN0 ( y = ( z + ( ( sqrt ` a ) x. w ) ) /\ ( ( z ^ 2 ) - ( a x. ( w ^ 2 ) ) ) = 1 ) } = { y e. RR | E. z e. NN0 E. w e. NN0 ( y = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) } ) | 
						
							| 11 |  | df-pell1qr |  |-  Pell1QR = ( a e. ( NN \ []NN ) |-> { y e. RR | E. z e. NN0 E. w e. NN0 ( y = ( z + ( ( sqrt ` a ) x. w ) ) /\ ( ( z ^ 2 ) - ( a x. ( w ^ 2 ) ) ) = 1 ) } ) | 
						
							| 12 |  | reex |  |-  RR e. _V | 
						
							| 13 | 12 | rabex |  |-  { y e. RR | E. z e. NN0 E. w e. NN0 ( y = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) } e. _V | 
						
							| 14 | 10 11 13 | fvmpt |  |-  ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) = { y e. RR | E. z e. NN0 E. w e. NN0 ( y = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) } ) |