| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell1qrval |  |-  ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) = { a e. RR | E. z e. NN0 E. w e. NN0 ( a = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) } ) | 
						
							| 2 | 1 | eleq2d |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> A e. { a e. RR | E. z e. NN0 E. w e. NN0 ( a = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) } ) ) | 
						
							| 3 |  | eqeq1 |  |-  ( a = A -> ( a = ( z + ( ( sqrt ` D ) x. w ) ) <-> A = ( z + ( ( sqrt ` D ) x. w ) ) ) ) | 
						
							| 4 | 3 | anbi1d |  |-  ( a = A -> ( ( a = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) <-> ( A = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 5 | 4 | 2rexbidv |  |-  ( a = A -> ( E. z e. NN0 E. w e. NN0 ( a = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) <-> E. z e. NN0 E. w e. NN0 ( A = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 6 | 5 | elrab |  |-  ( A e. { a e. RR | E. z e. NN0 E. w e. NN0 ( a = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) } <-> ( A e. RR /\ E. z e. NN0 E. w e. NN0 ( A = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 7 | 2 6 | bitrdi |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. z e. NN0 E. w e. NN0 ( A = ( z + ( ( sqrt ` D ) x. w ) ) /\ ( ( z ^ 2 ) - ( D x. ( w ^ 2 ) ) ) = 1 ) ) ) ) |