Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑎 = 𝐷 → ( √ ‘ 𝑎 ) = ( √ ‘ 𝐷 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑎 = 𝐷 → ( ( √ ‘ 𝑎 ) · 𝑤 ) = ( ( √ ‘ 𝐷 ) · 𝑤 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑎 = 𝐷 → ( 𝑧 + ( ( √ ‘ 𝑎 ) · 𝑤 ) ) = ( 𝑧 + ( ( √ ‘ 𝐷 ) · 𝑤 ) ) ) |
4 |
3
|
eqeq2d |
⊢ ( 𝑎 = 𝐷 → ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑎 ) · 𝑤 ) ) ↔ 𝑦 = ( 𝑧 + ( ( √ ‘ 𝐷 ) · 𝑤 ) ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑎 = 𝐷 → ( 𝑎 · ( 𝑤 ↑ 2 ) ) = ( 𝐷 · ( 𝑤 ↑ 2 ) ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑎 = 𝐷 → ( ( 𝑧 ↑ 2 ) − ( 𝑎 · ( 𝑤 ↑ 2 ) ) ) = ( ( 𝑧 ↑ 2 ) − ( 𝐷 · ( 𝑤 ↑ 2 ) ) ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑎 = 𝐷 → ( ( ( 𝑧 ↑ 2 ) − ( 𝑎 · ( 𝑤 ↑ 2 ) ) ) = 1 ↔ ( ( 𝑧 ↑ 2 ) − ( 𝐷 · ( 𝑤 ↑ 2 ) ) ) = 1 ) ) |
8 |
4 7
|
anbi12d |
⊢ ( 𝑎 = 𝐷 → ( ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑎 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑎 · ( 𝑤 ↑ 2 ) ) ) = 1 ) ↔ ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝐷 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝐷 · ( 𝑤 ↑ 2 ) ) ) = 1 ) ) ) |
9 |
8
|
2rexbidv |
⊢ ( 𝑎 = 𝐷 → ( ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑎 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑎 · ( 𝑤 ↑ 2 ) ) ) = 1 ) ↔ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝐷 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝐷 · ( 𝑤 ↑ 2 ) ) ) = 1 ) ) ) |
10 |
9
|
rabbidv |
⊢ ( 𝑎 = 𝐷 → { 𝑦 ∈ ℝ ∣ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑎 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑎 · ( 𝑤 ↑ 2 ) ) ) = 1 ) } = { 𝑦 ∈ ℝ ∣ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝐷 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝐷 · ( 𝑤 ↑ 2 ) ) ) = 1 ) } ) |
11 |
|
df-pell1qr |
⊢ Pell1QR = ( 𝑎 ∈ ( ℕ ∖ ◻NN ) ↦ { 𝑦 ∈ ℝ ∣ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑎 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑎 · ( 𝑤 ↑ 2 ) ) ) = 1 ) } ) |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
12
|
rabex |
⊢ { 𝑦 ∈ ℝ ∣ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝐷 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝐷 · ( 𝑤 ↑ 2 ) ) ) = 1 ) } ∈ V |
14 |
10 11 13
|
fvmpt |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) = { 𝑦 ∈ ℝ ∣ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝐷 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝐷 · ( 𝑤 ↑ 2 ) ) ) = 1 ) } ) |