| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑎  =  𝐷  →  ( √ ‘ 𝑎 )  =  ( √ ‘ 𝐷 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑎  =  𝐷  →  ( ( √ ‘ 𝑎 )  ·  𝑤 )  =  ( ( √ ‘ 𝐷 )  ·  𝑤 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑎  =  𝐷  →  ( 𝑧  +  ( ( √ ‘ 𝑎 )  ·  𝑤 ) )  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑎  =  𝐷  →  ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑎 )  ·  𝑤 ) )  ↔  𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑎  =  𝐷  →  ( 𝑎  ·  ( 𝑤 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑎  =  𝐷  →  ( ( 𝑧 ↑ 2 )  −  ( 𝑎  ·  ( 𝑤 ↑ 2 ) ) )  =  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑎  =  𝐷  →  ( ( ( 𝑧 ↑ 2 )  −  ( 𝑎  ·  ( 𝑤 ↑ 2 ) ) )  =  1  ↔  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 8 | 4 7 | anbi12d | ⊢ ( 𝑎  =  𝐷  →  ( ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑎 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑎  ·  ( 𝑤 ↑ 2 ) ) )  =  1 )  ↔  ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 9 | 8 | 2rexbidv | ⊢ ( 𝑎  =  𝐷  →  ( ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑎 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑎  ·  ( 𝑤 ↑ 2 ) ) )  =  1 )  ↔  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 10 | 9 | rabbidv | ⊢ ( 𝑎  =  𝐷  →  { 𝑦  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑎 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑎  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) }  =  { 𝑦  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) } ) | 
						
							| 11 |  | df-pell1qr | ⊢ Pell1QR  =  ( 𝑎  ∈  ( ℕ  ∖  ◻NN )  ↦  { 𝑦  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑎 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑎  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) } ) | 
						
							| 12 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 13 | 12 | rabex | ⊢ { 𝑦  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) }  ∈  V | 
						
							| 14 | 10 11 13 | fvmpt | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell1QR ‘ 𝐷 )  =  { 𝑦  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) } ) |