| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cperpg |
|- perpG |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
|
vb |
|- b |
| 5 |
3
|
cv |
|- a |
| 6 |
|
clng |
|- LineG |
| 7 |
1
|
cv |
|- g |
| 8 |
7 6
|
cfv |
|- ( LineG ` g ) |
| 9 |
8
|
crn |
|- ran ( LineG ` g ) |
| 10 |
5 9
|
wcel |
|- a e. ran ( LineG ` g ) |
| 11 |
4
|
cv |
|- b |
| 12 |
11 9
|
wcel |
|- b e. ran ( LineG ` g ) |
| 13 |
10 12
|
wa |
|- ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) |
| 14 |
|
vx |
|- x |
| 15 |
5 11
|
cin |
|- ( a i^i b ) |
| 16 |
|
vu |
|- u |
| 17 |
|
vv |
|- v |
| 18 |
16
|
cv |
|- u |
| 19 |
14
|
cv |
|- x |
| 20 |
17
|
cv |
|- v |
| 21 |
18 19 20
|
cs3 |
|- <" u x v "> |
| 22 |
|
crag |
|- raG |
| 23 |
7 22
|
cfv |
|- ( raG ` g ) |
| 24 |
21 23
|
wcel |
|- <" u x v "> e. ( raG ` g ) |
| 25 |
24 17 11
|
wral |
|- A. v e. b <" u x v "> e. ( raG ` g ) |
| 26 |
25 16 5
|
wral |
|- A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) |
| 27 |
26 14 15
|
wrex |
|- E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) |
| 28 |
13 27
|
wa |
|- ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) |
| 29 |
28 3 4
|
copab |
|- { <. a , b >. | ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) } |
| 30 |
1 2 29
|
cmpt |
|- ( g e. _V |-> { <. a , b >. | ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) } ) |
| 31 |
0 30
|
wceq |
|- perpG = ( g e. _V |-> { <. a , b >. | ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) } ) |