| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cperpg | ⊢ ⟂G | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 |  | vb | ⊢ 𝑏 | 
						
							| 5 | 3 | cv | ⊢ 𝑎 | 
						
							| 6 |  | clng | ⊢ LineG | 
						
							| 7 | 1 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( LineG ‘ 𝑔 ) | 
						
							| 9 | 8 | crn | ⊢ ran  ( LineG ‘ 𝑔 ) | 
						
							| 10 | 5 9 | wcel | ⊢ 𝑎  ∈  ran  ( LineG ‘ 𝑔 ) | 
						
							| 11 | 4 | cv | ⊢ 𝑏 | 
						
							| 12 | 11 9 | wcel | ⊢ 𝑏  ∈  ran  ( LineG ‘ 𝑔 ) | 
						
							| 13 | 10 12 | wa | ⊢ ( 𝑎  ∈  ran  ( LineG ‘ 𝑔 )  ∧  𝑏  ∈  ran  ( LineG ‘ 𝑔 ) ) | 
						
							| 14 |  | vx | ⊢ 𝑥 | 
						
							| 15 | 5 11 | cin | ⊢ ( 𝑎  ∩  𝑏 ) | 
						
							| 16 |  | vu | ⊢ 𝑢 | 
						
							| 17 |  | vv | ⊢ 𝑣 | 
						
							| 18 | 16 | cv | ⊢ 𝑢 | 
						
							| 19 | 14 | cv | ⊢ 𝑥 | 
						
							| 20 | 17 | cv | ⊢ 𝑣 | 
						
							| 21 | 18 19 20 | cs3 | ⊢ 〈“ 𝑢 𝑥 𝑣 ”〉 | 
						
							| 22 |  | crag | ⊢ ∟G | 
						
							| 23 | 7 22 | cfv | ⊢ ( ∟G ‘ 𝑔 ) | 
						
							| 24 | 21 23 | wcel | ⊢ 〈“ 𝑢 𝑥 𝑣 ”〉  ∈  ( ∟G ‘ 𝑔 ) | 
						
							| 25 | 24 17 11 | wral | ⊢ ∀ 𝑣  ∈  𝑏 〈“ 𝑢 𝑥 𝑣 ”〉  ∈  ( ∟G ‘ 𝑔 ) | 
						
							| 26 | 25 16 5 | wral | ⊢ ∀ 𝑢  ∈  𝑎 ∀ 𝑣  ∈  𝑏 〈“ 𝑢 𝑥 𝑣 ”〉  ∈  ( ∟G ‘ 𝑔 ) | 
						
							| 27 | 26 14 15 | wrex | ⊢ ∃ 𝑥  ∈  ( 𝑎  ∩  𝑏 ) ∀ 𝑢  ∈  𝑎 ∀ 𝑣  ∈  𝑏 〈“ 𝑢 𝑥 𝑣 ”〉  ∈  ( ∟G ‘ 𝑔 ) | 
						
							| 28 | 13 27 | wa | ⊢ ( ( 𝑎  ∈  ran  ( LineG ‘ 𝑔 )  ∧  𝑏  ∈  ran  ( LineG ‘ 𝑔 ) )  ∧  ∃ 𝑥  ∈  ( 𝑎  ∩  𝑏 ) ∀ 𝑢  ∈  𝑎 ∀ 𝑣  ∈  𝑏 〈“ 𝑢 𝑥 𝑣 ”〉  ∈  ( ∟G ‘ 𝑔 ) ) | 
						
							| 29 | 28 3 4 | copab | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ran  ( LineG ‘ 𝑔 )  ∧  𝑏  ∈  ran  ( LineG ‘ 𝑔 ) )  ∧  ∃ 𝑥  ∈  ( 𝑎  ∩  𝑏 ) ∀ 𝑢  ∈  𝑎 ∀ 𝑣  ∈  𝑏 〈“ 𝑢 𝑥 𝑣 ”〉  ∈  ( ∟G ‘ 𝑔 ) ) } | 
						
							| 30 | 1 2 29 | cmpt | ⊢ ( 𝑔  ∈  V  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ran  ( LineG ‘ 𝑔 )  ∧  𝑏  ∈  ran  ( LineG ‘ 𝑔 ) )  ∧  ∃ 𝑥  ∈  ( 𝑎  ∩  𝑏 ) ∀ 𝑢  ∈  𝑎 ∀ 𝑣  ∈  𝑏 〈“ 𝑢 𝑥 𝑣 ”〉  ∈  ( ∟G ‘ 𝑔 ) ) } ) | 
						
							| 31 | 0 30 | wceq | ⊢ ⟂G  =  ( 𝑔  ∈  V  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ran  ( LineG ‘ 𝑔 )  ∧  𝑏  ∈  ran  ( LineG ‘ 𝑔 ) )  ∧  ∃ 𝑥  ∈  ( 𝑎  ∩  𝑏 ) ∀ 𝑢  ∈  𝑎 ∀ 𝑣  ∈  𝑏 〈“ 𝑢 𝑥 𝑣 ”〉  ∈  ( ∟G ‘ 𝑔 ) ) } ) |