Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
isperp.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
isperp.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
isperp.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
isperp.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
isperp.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
7 |
|
isperp.b |
⊢ ( 𝜑 → 𝐵 ∈ ran 𝐿 ) |
8 |
|
df-br |
⊢ ( 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ⟂G ‘ 𝐺 ) ) |
9 |
|
df-perpg |
⊢ ⟂G = ( 𝑔 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) } ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( LineG ‘ 𝑔 ) = ( LineG ‘ 𝐺 ) ) |
12 |
11 4
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( LineG ‘ 𝑔 ) = 𝐿 ) |
13 |
12
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ran ( LineG ‘ 𝑔 ) = ran 𝐿 ) |
14 |
13
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ↔ 𝑎 ∈ ran 𝐿 ) ) |
15 |
13
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ↔ 𝑏 ∈ ran 𝐿 ) ) |
16 |
14 15
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ↔ ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ) ) |
17 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ∟G ‘ 𝑔 ) = ( ∟G ‘ 𝐺 ) ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ↔ 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
19 |
18
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ↔ ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
20 |
19
|
rexralbidv |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ↔ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
21 |
16 20
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) ↔ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) ) |
22 |
21
|
opabbidv |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ) |
23 |
5
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
24 |
4
|
fvexi |
⊢ 𝐿 ∈ V |
25 |
|
rnexg |
⊢ ( 𝐿 ∈ V → ran 𝐿 ∈ V ) |
26 |
24 25
|
mp1i |
⊢ ( 𝜑 → ran 𝐿 ∈ V ) |
27 |
26 26
|
xpexd |
⊢ ( 𝜑 → ( ran 𝐿 × ran 𝐿 ) ∈ V ) |
28 |
|
opabssxp |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ⊆ ( ran 𝐿 × ran 𝐿 ) |
29 |
28
|
a1i |
⊢ ( 𝜑 → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ⊆ ( ran 𝐿 × ran 𝐿 ) ) |
30 |
27 29
|
ssexd |
⊢ ( 𝜑 → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ∈ V ) |
31 |
9 22 23 30
|
fvmptd2 |
⊢ ( 𝜑 → ( ⟂G ‘ 𝐺 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ) |
32 |
31
|
eleq2d |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ ( ⟂G ‘ 𝐺 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ) ) |
33 |
8 32
|
syl5bb |
⊢ ( 𝜑 → ( 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ) ) |
34 |
|
ineq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ∩ 𝑏 ) = ( 𝐴 ∩ 𝐵 ) ) |
35 |
|
simpll |
⊢ ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∧ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ) → 𝑎 = 𝐴 ) |
36 |
|
simpllr |
⊢ ( ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∧ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ) ∧ 𝑢 ∈ 𝑎 ) → 𝑏 = 𝐵 ) |
37 |
36
|
raleqdv |
⊢ ( ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∧ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ) ∧ 𝑢 ∈ 𝑎 ) → ( ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
38 |
35 37
|
raleqbidva |
⊢ ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∧ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ) → ( ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
39 |
34 38
|
rexeqbidva |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
40 |
39
|
opelopab2a |
⊢ ( ( 𝐴 ∈ ran 𝐿 ∧ 𝐵 ∈ ran 𝐿 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
41 |
6 7 40
|
syl2anc |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
42 |
33 41
|
bitrd |
⊢ ( 𝜑 → ( 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |