Description: Define perfectly normal spaces. A space is perfectly normal if it is normal and every closed set is a G_δ set, meaning that it is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pnrm | |- PNrm = { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpnrm | |- PNrm |
|
| 1 | vj | |- j |
|
| 2 | cnrm | |- Nrm |
|
| 3 | ccld | |- Clsd |
|
| 4 | 1 | cv | |- j |
| 5 | 4 3 | cfv | |- ( Clsd ` j ) |
| 6 | vf | |- f |
|
| 7 | cmap | |- ^m |
|
| 8 | cn | |- NN |
|
| 9 | 4 8 7 | co | |- ( j ^m NN ) |
| 10 | 6 | cv | |- f |
| 11 | 10 | crn | |- ran f |
| 12 | 11 | cint | |- |^| ran f |
| 13 | 6 9 12 | cmpt | |- ( f e. ( j ^m NN ) |-> |^| ran f ) |
| 14 | 13 | crn | |- ran ( f e. ( j ^m NN ) |-> |^| ran f ) |
| 15 | 5 14 | wss | |- ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) |
| 16 | 15 1 2 | crab | |- { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) } |
| 17 | 0 16 | wceq | |- PNrm = { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) } |