Metamath Proof Explorer


Definition df-prob

Description: Define the class of probability measures as the set of measures with total measure 1. (Contributed by Thierry Arnoux, 14-Sep-2016)

Ref Expression
Assertion df-prob
|- Prob = { p e. U. ran measures | ( p ` U. dom p ) = 1 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprb
 |-  Prob
1 vp
 |-  p
2 cmeas
 |-  measures
3 2 crn
 |-  ran measures
4 3 cuni
 |-  U. ran measures
5 1 cv
 |-  p
6 5 cdm
 |-  dom p
7 6 cuni
 |-  U. dom p
8 7 5 cfv
 |-  ( p ` U. dom p )
9 c1
 |-  1
10 8 9 wceq
 |-  ( p ` U. dom p ) = 1
11 10 1 4 crab
 |-  { p e. U. ran measures | ( p ` U. dom p ) = 1 }
12 0 11 wceq
 |-  Prob = { p e. U. ran measures | ( p ` U. dom p ) = 1 }