Metamath Proof Explorer


Theorem elprob

Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016)

Ref Expression
Assertion elprob
|- ( P e. Prob <-> ( P e. U. ran measures /\ ( P ` U. dom P ) = 1 ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( p = P -> p = P )
2 dmeq
 |-  ( p = P -> dom p = dom P )
3 2 unieqd
 |-  ( p = P -> U. dom p = U. dom P )
4 1 3 fveq12d
 |-  ( p = P -> ( p ` U. dom p ) = ( P ` U. dom P ) )
5 4 eqeq1d
 |-  ( p = P -> ( ( p ` U. dom p ) = 1 <-> ( P ` U. dom P ) = 1 ) )
6 df-prob
 |-  Prob = { p e. U. ran measures | ( p ` U. dom p ) = 1 }
7 5 6 elrab2
 |-  ( P e. Prob <-> ( P e. U. ran measures /\ ( P ` U. dom P ) = 1 ) )