Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elprob | |- ( P e. Prob <-> ( P e. U. ran measures /\ ( P ` U. dom P ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( p = P -> p = P ) |
|
| 2 | dmeq | |- ( p = P -> dom p = dom P ) |
|
| 3 | 2 | unieqd | |- ( p = P -> U. dom p = U. dom P ) |
| 4 | 1 3 | fveq12d | |- ( p = P -> ( p ` U. dom p ) = ( P ` U. dom P ) ) |
| 5 | 4 | eqeq1d | |- ( p = P -> ( ( p ` U. dom p ) = 1 <-> ( P ` U. dom P ) = 1 ) ) |
| 6 | df-prob | |- Prob = { p e. U. ran measures | ( p ` U. dom p ) = 1 } |
|
| 7 | 5 6 | elrab2 | |- ( P e. Prob <-> ( P e. U. ran measures /\ ( P ` U. dom P ) = 1 ) ) |