Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elprob | ⊢ ( 𝑃 ∈ Prob ↔ ( 𝑃 ∈ ∪ ran measures ∧ ( 𝑃 ‘ ∪ dom 𝑃 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑝 = 𝑃 → 𝑝 = 𝑃 ) | |
| 2 | dmeq | ⊢ ( 𝑝 = 𝑃 → dom 𝑝 = dom 𝑃 ) | |
| 3 | 2 | unieqd | ⊢ ( 𝑝 = 𝑃 → ∪ dom 𝑝 = ∪ dom 𝑃 ) |
| 4 | 1 3 | fveq12d | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ ∪ dom 𝑝 ) = ( 𝑃 ‘ ∪ dom 𝑃 ) ) |
| 5 | 4 | eqeq1d | ⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ ∪ dom 𝑝 ) = 1 ↔ ( 𝑃 ‘ ∪ dom 𝑃 ) = 1 ) ) |
| 6 | df-prob | ⊢ Prob = { 𝑝 ∈ ∪ ran measures ∣ ( 𝑝 ‘ ∪ dom 𝑝 ) = 1 } | |
| 7 | 5 6 | elrab2 | ⊢ ( 𝑃 ∈ Prob ↔ ( 𝑃 ∈ ∪ ran measures ∧ ( 𝑃 ‘ ∪ dom 𝑃 ) = 1 ) ) |