Step |
Hyp |
Ref |
Expression |
0 |
|
cray |
|- Ray |
1 |
|
vp |
|- p |
2 |
|
va |
|- a |
3 |
|
vr |
|- r |
4 |
|
vn |
|- n |
5 |
|
cn |
|- NN |
6 |
1
|
cv |
|- p |
7 |
|
cee |
|- EE |
8 |
4
|
cv |
|- n |
9 |
8 7
|
cfv |
|- ( EE ` n ) |
10 |
6 9
|
wcel |
|- p e. ( EE ` n ) |
11 |
2
|
cv |
|- a |
12 |
11 9
|
wcel |
|- a e. ( EE ` n ) |
13 |
6 11
|
wne |
|- p =/= a |
14 |
10 12 13
|
w3a |
|- ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) |
15 |
3
|
cv |
|- r |
16 |
|
vx |
|- x |
17 |
|
coutsideof |
|- OutsideOf |
18 |
16
|
cv |
|- x |
19 |
11 18
|
cop |
|- <. a , x >. |
20 |
6 19 17
|
wbr |
|- p OutsideOf <. a , x >. |
21 |
20 16 9
|
crab |
|- { x e. ( EE ` n ) | p OutsideOf <. a , x >. } |
22 |
15 21
|
wceq |
|- r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } |
23 |
14 22
|
wa |
|- ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) |
24 |
23 4 5
|
wrex |
|- E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) |
25 |
24 1 2 3
|
coprab |
|- { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } |
26 |
0 25
|
wceq |
|- Ray = { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } |