| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cray |  |-  Ray | 
						
							| 1 |  | vp |  |-  p | 
						
							| 2 |  | va |  |-  a | 
						
							| 3 |  | vr |  |-  r | 
						
							| 4 |  | vn |  |-  n | 
						
							| 5 |  | cn |  |-  NN | 
						
							| 6 | 1 | cv |  |-  p | 
						
							| 7 |  | cee |  |-  EE | 
						
							| 8 | 4 | cv |  |-  n | 
						
							| 9 | 8 7 | cfv |  |-  ( EE ` n ) | 
						
							| 10 | 6 9 | wcel |  |-  p e. ( EE ` n ) | 
						
							| 11 | 2 | cv |  |-  a | 
						
							| 12 | 11 9 | wcel |  |-  a e. ( EE ` n ) | 
						
							| 13 | 6 11 | wne |  |-  p =/= a | 
						
							| 14 | 10 12 13 | w3a |  |-  ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) | 
						
							| 15 | 3 | cv |  |-  r | 
						
							| 16 |  | vx |  |-  x | 
						
							| 17 |  | coutsideof |  |-  OutsideOf | 
						
							| 18 | 16 | cv |  |-  x | 
						
							| 19 | 11 18 | cop |  |-  <. a , x >. | 
						
							| 20 | 6 19 17 | wbr |  |-  p OutsideOf <. a , x >. | 
						
							| 21 | 20 16 9 | crab |  |-  { x e. ( EE ` n ) | p OutsideOf <. a , x >. } | 
						
							| 22 | 15 21 | wceq |  |-  r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } | 
						
							| 23 | 14 22 | wa |  |-  ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) | 
						
							| 24 | 23 4 5 | wrex |  |-  E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) | 
						
							| 25 | 24 1 2 3 | coprab |  |-  { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } | 
						
							| 26 | 0 25 | wceq |  |-  Ray = { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } |