Metamath Proof Explorer


Definition df-ray

Description: Define the Ray function. This function generates the set of all points that lie on the ray starting at p and passing through a . Definition 6.8 of Schwabhauser p. 44. (Contributed by Scott Fenton, 21-Oct-2013)

Ref Expression
Assertion df-ray Ray = { ⟨ ⟨ 𝑝 , 𝑎 ⟩ , 𝑟 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf ⟨ 𝑎 , 𝑥 ⟩ } ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cray Ray
1 vp 𝑝
2 va 𝑎
3 vr 𝑟
4 vn 𝑛
5 cn
6 1 cv 𝑝
7 cee 𝔼
8 4 cv 𝑛
9 8 7 cfv ( 𝔼 ‘ 𝑛 )
10 6 9 wcel 𝑝 ∈ ( 𝔼 ‘ 𝑛 )
11 2 cv 𝑎
12 11 9 wcel 𝑎 ∈ ( 𝔼 ‘ 𝑛 )
13 6 11 wne 𝑝𝑎
14 10 12 13 w3a ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝𝑎 )
15 3 cv 𝑟
16 vx 𝑥
17 coutsideof OutsideOf
18 16 cv 𝑥
19 11 18 cop 𝑎 , 𝑥
20 6 19 17 wbr 𝑝 OutsideOf ⟨ 𝑎 , 𝑥
21 20 16 9 crab { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf ⟨ 𝑎 , 𝑥 ⟩ }
22 15 21 wceq 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf ⟨ 𝑎 , 𝑥 ⟩ }
23 14 22 wa ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf ⟨ 𝑎 , 𝑥 ⟩ } )
24 23 4 5 wrex 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf ⟨ 𝑎 , 𝑥 ⟩ } )
25 24 1 2 3 coprab { ⟨ ⟨ 𝑝 , 𝑎 ⟩ , 𝑟 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf ⟨ 𝑎 , 𝑥 ⟩ } ) }
26 0 25 wceq Ray = { ⟨ ⟨ 𝑝 , 𝑎 ⟩ , 𝑟 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf ⟨ 𝑎 , 𝑥 ⟩ } ) }