| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cray | ⊢ Ray | 
						
							| 1 |  | vp | ⊢ 𝑝 | 
						
							| 2 |  | va | ⊢ 𝑎 | 
						
							| 3 |  | vr | ⊢ 𝑟 | 
						
							| 4 |  | vn | ⊢ 𝑛 | 
						
							| 5 |  | cn | ⊢ ℕ | 
						
							| 6 | 1 | cv | ⊢ 𝑝 | 
						
							| 7 |  | cee | ⊢ 𝔼 | 
						
							| 8 | 4 | cv | ⊢ 𝑛 | 
						
							| 9 | 8 7 | cfv | ⊢ ( 𝔼 ‘ 𝑛 ) | 
						
							| 10 | 6 9 | wcel | ⊢ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) | 
						
							| 11 | 2 | cv | ⊢ 𝑎 | 
						
							| 12 | 11 9 | wcel | ⊢ 𝑎  ∈  ( 𝔼 ‘ 𝑛 ) | 
						
							| 13 | 6 11 | wne | ⊢ 𝑝  ≠  𝑎 | 
						
							| 14 | 10 12 13 | w3a | ⊢ ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 ) | 
						
							| 15 | 3 | cv | ⊢ 𝑟 | 
						
							| 16 |  | vx | ⊢ 𝑥 | 
						
							| 17 |  | coutsideof | ⊢ OutsideOf | 
						
							| 18 | 16 | cv | ⊢ 𝑥 | 
						
							| 19 | 11 18 | cop | ⊢ 〈 𝑎 ,  𝑥 〉 | 
						
							| 20 | 6 19 17 | wbr | ⊢ 𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 | 
						
							| 21 | 20 16 9 | crab | ⊢ { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } | 
						
							| 22 | 15 21 | wceq | ⊢ 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } | 
						
							| 23 | 14 22 | wa | ⊢ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) | 
						
							| 24 | 23 4 5 | wrex | ⊢ ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) | 
						
							| 25 | 24 1 2 3 | coprab | ⊢ { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } | 
						
							| 26 | 0 25 | wceq | ⊢ Ray  =  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } |