Step |
Hyp |
Ref |
Expression |
0 |
|
cray |
⊢ Ray |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
va |
⊢ 𝑎 |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
vn |
⊢ 𝑛 |
5 |
|
cn |
⊢ ℕ |
6 |
1
|
cv |
⊢ 𝑝 |
7 |
|
cee |
⊢ 𝔼 |
8 |
4
|
cv |
⊢ 𝑛 |
9 |
8 7
|
cfv |
⊢ ( 𝔼 ‘ 𝑛 ) |
10 |
6 9
|
wcel |
⊢ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) |
11 |
2
|
cv |
⊢ 𝑎 |
12 |
11 9
|
wcel |
⊢ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) |
13 |
6 11
|
wne |
⊢ 𝑝 ≠ 𝑎 |
14 |
10 12 13
|
w3a |
⊢ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) |
15 |
3
|
cv |
⊢ 𝑟 |
16 |
|
vx |
⊢ 𝑥 |
17 |
|
coutsideof |
⊢ OutsideOf |
18 |
16
|
cv |
⊢ 𝑥 |
19 |
11 18
|
cop |
⊢ 〈 𝑎 , 𝑥 〉 |
20 |
6 19 17
|
wbr |
⊢ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 |
21 |
20 16 9
|
crab |
⊢ { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } |
22 |
15 21
|
wceq |
⊢ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } |
23 |
14 22
|
wa |
⊢ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) |
24 |
23 4 5
|
wrex |
⊢ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) |
25 |
24 1 2 3
|
coprab |
⊢ { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } |
26 |
0 25
|
wceq |
⊢ Ray = { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } |