Description: Define subtraction between real numbers. This operator saves a few axioms over df-sub in certain situations. Theorem resubval shows its value, resubadd relates it to addition, and rersubcl proves its closure. It is the restriction of df-sub to the reals: subresre . (Contributed by Steven Nguyen, 7-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-resub | |- -R = ( x e. RR , y e. RR |-> ( iota_ z e. RR ( y + z ) = x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cresub | |- -R |
|
| 1 | vx | |- x |
|
| 2 | cr | |- RR |
|
| 3 | vy | |- y |
|
| 4 | vz | |- z |
|
| 5 | 3 | cv | |- y |
| 6 | caddc | |- + |
|
| 7 | 4 | cv | |- z |
| 8 | 5 7 6 | co | |- ( y + z ) |
| 9 | 1 | cv | |- x |
| 10 | 8 9 | wceq | |- ( y + z ) = x |
| 11 | 10 4 2 | crio | |- ( iota_ z e. RR ( y + z ) = x ) |
| 12 | 1 3 2 2 11 | cmpo | |- ( x e. RR , y e. RR |-> ( iota_ z e. RR ( y + z ) = x ) ) |
| 13 | 0 12 | wceq | |- -R = ( x e. RR , y e. RR |-> ( iota_ z e. RR ( y + z ) = x ) ) |