Step |
Hyp |
Ref |
Expression |
0 |
|
cresv |
|- |`v |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
|
csca |
|- Scalar |
6 |
1
|
cv |
|- w |
7 |
6 5
|
cfv |
|- ( Scalar ` w ) |
8 |
7 4
|
cfv |
|- ( Base ` ( Scalar ` w ) ) |
9 |
3
|
cv |
|- x |
10 |
8 9
|
wss |
|- ( Base ` ( Scalar ` w ) ) C_ x |
11 |
|
csts |
|- sSet |
12 |
|
cnx |
|- ndx |
13 |
12 5
|
cfv |
|- ( Scalar ` ndx ) |
14 |
|
cress |
|- |`s |
15 |
7 9 14
|
co |
|- ( ( Scalar ` w ) |`s x ) |
16 |
13 15
|
cop |
|- <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. |
17 |
6 16 11
|
co |
|- ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) |
18 |
10 6 17
|
cif |
|- if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) |
19 |
1 3 2 2 18
|
cmpo |
|- ( w e. _V , x e. _V |-> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) ) |
20 |
0 19
|
wceq |
|- |`v = ( w e. _V , x e. _V |-> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) ) |