Metamath Proof Explorer


Definition df-resv

Description: Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018)

Ref Expression
Assertion df-resv 𝑣 = w V , x V if Base Scalar w x w w sSet Scalar ndx Scalar w 𝑠 x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cresv class 𝑣
1 vw setvar w
2 cvv class V
3 vx setvar x
4 cbs class Base
5 csca class Scalar
6 1 cv setvar w
7 6 5 cfv class Scalar w
8 7 4 cfv class Base Scalar w
9 3 cv setvar x
10 8 9 wss wff Base Scalar w x
11 csts class sSet
12 cnx class ndx
13 12 5 cfv class Scalar ndx
14 cress class 𝑠
15 7 9 14 co class Scalar w 𝑠 x
16 13 15 cop class Scalar ndx Scalar w 𝑠 x
17 6 16 11 co class w sSet Scalar ndx Scalar w 𝑠 x
18 10 6 17 cif class if Base Scalar w x w w sSet Scalar ndx Scalar w 𝑠 x
19 1 3 2 2 18 cmpo class w V , x V if Base Scalar w x w w sSet Scalar ndx Scalar w 𝑠 x
20 0 19 wceq wff 𝑣 = w V , x V if Base Scalar w x w w sSet Scalar ndx Scalar w 𝑠 x