| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crlreg |
|- RLReg |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( Base ` r ) |
| 7 |
|
vy |
|- y |
| 8 |
3
|
cv |
|- x |
| 9 |
|
cmulr |
|- .r |
| 10 |
5 9
|
cfv |
|- ( .r ` r ) |
| 11 |
7
|
cv |
|- y |
| 12 |
8 11 10
|
co |
|- ( x ( .r ` r ) y ) |
| 13 |
|
c0g |
|- 0g |
| 14 |
5 13
|
cfv |
|- ( 0g ` r ) |
| 15 |
12 14
|
wceq |
|- ( x ( .r ` r ) y ) = ( 0g ` r ) |
| 16 |
11 14
|
wceq |
|- y = ( 0g ` r ) |
| 17 |
15 16
|
wi |
|- ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) |
| 18 |
17 7 6
|
wral |
|- A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) |
| 19 |
18 3 6
|
crab |
|- { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } |
| 20 |
1 2 19
|
cmpt |
|- ( r e. _V |-> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } ) |
| 21 |
0 20
|
wceq |
|- RLReg = ( r e. _V |-> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } ) |