Description: Define the spectrum of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rspec | |- Spec = ( r e. Ring |-> ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | crspec | |- Spec | |
| 1 | vr | |- r | |
| 2 | crg | |- Ring | |
| 3 | cidlsrg | |- IDLsrg | |
| 4 | 1 | cv | |- r | 
| 5 | 4 3 | cfv | |- ( IDLsrg ` r ) | 
| 6 | cress | |- |`s | |
| 7 | cprmidl | |- PrmIdeal | |
| 8 | 4 7 | cfv | |- ( PrmIdeal ` r ) | 
| 9 | 5 8 6 | co | |- ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) ) | 
| 10 | 1 2 9 | cmpt | |- ( r e. Ring |-> ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) ) ) | 
| 11 | 0 10 | wceq | |- Spec = ( r e. Ring |-> ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) ) ) |