Description: Define the spectrum of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-rspec | |- Spec = ( r e. Ring |-> ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crspec | |- Spec |
|
1 | vr | |- r |
|
2 | crg | |- Ring |
|
3 | cidlsrg | |- IDLsrg |
|
4 | 1 | cv | |- r |
5 | 4 3 | cfv | |- ( IDLsrg ` r ) |
6 | cress | |- |`s |
|
7 | cprmidl | |- PrmIdeal |
|
8 | 4 7 | cfv | |- ( PrmIdeal ` r ) |
9 | 5 8 6 | co | |- ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) ) |
10 | 1 2 9 | cmpt | |- ( r e. Ring |-> ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) ) ) |
11 | 0 10 | wceq | |- Spec = ( r e. Ring |-> ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) ) ) |