Description: Define the spectrum of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-rspec | ⊢ Spec = ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crspec | ⊢ Spec | |
1 | vr | ⊢ 𝑟 | |
2 | crg | ⊢ Ring | |
3 | cidlsrg | ⊢ IDLsrg | |
4 | 1 | cv | ⊢ 𝑟 |
5 | 4 3 | cfv | ⊢ ( IDLsrg ‘ 𝑟 ) |
6 | cress | ⊢ ↾s | |
7 | cprmidl | ⊢ PrmIdeal | |
8 | 4 7 | cfv | ⊢ ( PrmIdeal ‘ 𝑟 ) |
9 | 5 8 6 | co | ⊢ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) |
10 | 1 2 9 | cmpt | ⊢ ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) ) |
11 | 0 10 | wceq | ⊢ Spec = ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) ) |