Description: Define the spectrum of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rspec | ⊢ Spec = ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | crspec | ⊢ Spec | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | crg | ⊢ Ring | |
| 3 | cidlsrg | ⊢ IDLsrg | |
| 4 | 1 | cv | ⊢ 𝑟 | 
| 5 | 4 3 | cfv | ⊢ ( IDLsrg ‘ 𝑟 ) | 
| 6 | cress | ⊢ ↾s | |
| 7 | cprmidl | ⊢ PrmIdeal | |
| 8 | 4 7 | cfv | ⊢ ( PrmIdeal ‘ 𝑟 ) | 
| 9 | 5 8 6 | co | ⊢ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) | 
| 10 | 1 2 9 | cmpt | ⊢ ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) ) | 
| 11 | 0 10 | wceq | ⊢ Spec = ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) ) |