Metamath Proof Explorer


Definition df-rspec

Description: Define the spectrum of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Assertion df-rspec Spec = ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crspec Spec
1 vr 𝑟
2 crg Ring
3 cidlsrg IDLsrg
4 1 cv 𝑟
5 4 3 cfv ( IDLsrg ‘ 𝑟 )
6 cress s
7 cprmidl PrmIdeal
8 4 7 cfv ( PrmIdeal ‘ 𝑟 )
9 5 8 6 co ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) )
10 1 2 9 cmpt ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) )
11 0 10 wceq Spec = ( 𝑟 ∈ Ring ↦ ( ( IDLsrg ‘ 𝑟 ) ↾s ( PrmIdeal ‘ 𝑟 ) ) )